Solve for k
k = -\frac{\sqrt{18 \sqrt{10} - 2}}{2} \approx -3.705435126
k = \frac{\sqrt{18 \sqrt{10} - 2}}{2} \approx 3.705435126
Share
Copied to clipboard
4k^{2}+4k^{4}+1-810=0
Subtract 810 from both sides.
4k^{2}+4k^{4}-809=0
Subtract 810 from 1 to get -809.
4t^{2}+4t-809=0
Substitute t for k^{2}.
t=\frac{-4±\sqrt{4^{2}-4\times 4\left(-809\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 4 for b, and -809 for c in the quadratic formula.
t=\frac{-4±36\sqrt{10}}{8}
Do the calculations.
t=\frac{9\sqrt{10}-1}{2} t=\frac{-9\sqrt{10}-1}{2}
Solve the equation t=\frac{-4±36\sqrt{10}}{8} when ± is plus and when ± is minus.
k=\frac{\sqrt{18\sqrt{10}-2}}{2} k=-\frac{\sqrt{18\sqrt{10}-2}}{2}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}