Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(4i\times 2+4\left(-1\right)i^{2}\right)\left(5+3i\right)
Multiply 4i times 2-i.
\left(4i\times 2+4\left(-1\right)\left(-1\right)\right)\left(5+3i\right)
By definition, i^{2} is -1.
\left(4+8i\right)\left(5+3i\right)
Do the multiplications. Reorder the terms.
4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3i^{2}
Multiply complex numbers 4+8i and 5+3i like you multiply binomials.
4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3\left(-1\right)
By definition, i^{2} is -1.
20+12i+40i-24
Do the multiplications.
20-24+\left(12+40\right)i
Combine the real and imaginary parts.
-4+52i
Do the additions.
Re(\left(4i\times 2+4\left(-1\right)i^{2}\right)\left(5+3i\right))
Multiply 4i times 2-i.
Re(\left(4i\times 2+4\left(-1\right)\left(-1\right)\right)\left(5+3i\right))
By definition, i^{2} is -1.
Re(\left(4+8i\right)\left(5+3i\right))
Do the multiplications in 4i\times 2+4\left(-1\right)\left(-1\right). Reorder the terms.
Re(4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3i^{2})
Multiply complex numbers 4+8i and 5+3i like you multiply binomials.
Re(4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3\left(-1\right))
By definition, i^{2} is -1.
Re(20+12i+40i-24)
Do the multiplications in 4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3\left(-1\right).
Re(20-24+\left(12+40\right)i)
Combine the real and imaginary parts in 20+12i+40i-24.
Re(-4+52i)
Do the additions in 20-24+\left(12+40\right)i.
-4
The real part of -4+52i is -4.