Evaluate
-4+52i
Real Part
-4
Share
Copied to clipboard
\left(4i\times 2+4\left(-1\right)i^{2}\right)\left(5+3i\right)
Multiply 4i times 2-i.
\left(4i\times 2+4\left(-1\right)\left(-1\right)\right)\left(5+3i\right)
By definition, i^{2} is -1.
\left(4+8i\right)\left(5+3i\right)
Do the multiplications. Reorder the terms.
4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3i^{2}
Multiply complex numbers 4+8i and 5+3i like you multiply binomials.
4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3\left(-1\right)
By definition, i^{2} is -1.
20+12i+40i-24
Do the multiplications.
20-24+\left(12+40\right)i
Combine the real and imaginary parts.
-4+52i
Do the additions.
Re(\left(4i\times 2+4\left(-1\right)i^{2}\right)\left(5+3i\right))
Multiply 4i times 2-i.
Re(\left(4i\times 2+4\left(-1\right)\left(-1\right)\right)\left(5+3i\right))
By definition, i^{2} is -1.
Re(\left(4+8i\right)\left(5+3i\right))
Do the multiplications in 4i\times 2+4\left(-1\right)\left(-1\right). Reorder the terms.
Re(4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3i^{2})
Multiply complex numbers 4+8i and 5+3i like you multiply binomials.
Re(4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3\left(-1\right))
By definition, i^{2} is -1.
Re(20+12i+40i-24)
Do the multiplications in 4\times 5+4\times \left(3i\right)+8i\times 5+8\times 3\left(-1\right).
Re(20-24+\left(12+40\right)i)
Combine the real and imaginary parts in 20+12i+40i-24.
Re(-4+52i)
Do the additions in 20-24+\left(12+40\right)i.
-4
The real part of -4+52i is -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}