Solve for x
x=\frac{2h^{2}-341}{3}
Solve for h (complex solution)
h=-\frac{\sqrt{6x+682}}{2}
h=\frac{\sqrt{6x+682}}{2}
Solve for h
h=\frac{\sqrt{6x+682}}{2}
h=-\frac{\sqrt{6x+682}}{2}\text{, }x\geq -\frac{341}{3}
Graph
Share
Copied to clipboard
-6x-682=-4h^{2}
Subtract 4h^{2} from both sides. Anything subtracted from zero gives its negation.
-6x=-4h^{2}+682
Add 682 to both sides.
-6x=682-4h^{2}
The equation is in standard form.
\frac{-6x}{-6}=\frac{682-4h^{2}}{-6}
Divide both sides by -6.
x=\frac{682-4h^{2}}{-6}
Dividing by -6 undoes the multiplication by -6.
x=\frac{2h^{2}-341}{3}
Divide -4h^{2}+682 by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}