Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

8h^{2}+3h+4=52
Combine 4h^{2} and 4h^{2} to get 8h^{2}.
8h^{2}+3h+4-52=0
Subtract 52 from both sides.
8h^{2}+3h-48=0
Subtract 52 from 4 to get -48.
h=\frac{-3±\sqrt{3^{2}-4\times 8\left(-48\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 3 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-3±\sqrt{9-4\times 8\left(-48\right)}}{2\times 8}
Square 3.
h=\frac{-3±\sqrt{9-32\left(-48\right)}}{2\times 8}
Multiply -4 times 8.
h=\frac{-3±\sqrt{9+1536}}{2\times 8}
Multiply -32 times -48.
h=\frac{-3±\sqrt{1545}}{2\times 8}
Add 9 to 1536.
h=\frac{-3±\sqrt{1545}}{16}
Multiply 2 times 8.
h=\frac{\sqrt{1545}-3}{16}
Now solve the equation h=\frac{-3±\sqrt{1545}}{16} when ± is plus. Add -3 to \sqrt{1545}.
h=\frac{-\sqrt{1545}-3}{16}
Now solve the equation h=\frac{-3±\sqrt{1545}}{16} when ± is minus. Subtract \sqrt{1545} from -3.
h=\frac{\sqrt{1545}-3}{16} h=\frac{-\sqrt{1545}-3}{16}
The equation is now solved.
8h^{2}+3h+4=52
Combine 4h^{2} and 4h^{2} to get 8h^{2}.
8h^{2}+3h=52-4
Subtract 4 from both sides.
8h^{2}+3h=48
Subtract 4 from 52 to get 48.
\frac{8h^{2}+3h}{8}=\frac{48}{8}
Divide both sides by 8.
h^{2}+\frac{3}{8}h=\frac{48}{8}
Dividing by 8 undoes the multiplication by 8.
h^{2}+\frac{3}{8}h=6
Divide 48 by 8.
h^{2}+\frac{3}{8}h+\left(\frac{3}{16}\right)^{2}=6+\left(\frac{3}{16}\right)^{2}
Divide \frac{3}{8}, the coefficient of the x term, by 2 to get \frac{3}{16}. Then add the square of \frac{3}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+\frac{3}{8}h+\frac{9}{256}=6+\frac{9}{256}
Square \frac{3}{16} by squaring both the numerator and the denominator of the fraction.
h^{2}+\frac{3}{8}h+\frac{9}{256}=\frac{1545}{256}
Add 6 to \frac{9}{256}.
\left(h+\frac{3}{16}\right)^{2}=\frac{1545}{256}
Factor h^{2}+\frac{3}{8}h+\frac{9}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{3}{16}\right)^{2}}=\sqrt{\frac{1545}{256}}
Take the square root of both sides of the equation.
h+\frac{3}{16}=\frac{\sqrt{1545}}{16} h+\frac{3}{16}=-\frac{\sqrt{1545}}{16}
Simplify.
h=\frac{\sqrt{1545}-3}{16} h=\frac{-\sqrt{1545}-3}{16}
Subtract \frac{3}{16} from both sides of the equation.