Solve for x (complex solution)
x=-\frac{2}{4g^{2}-39}
g\neq -\frac{\sqrt{39}}{2}\text{ and }g\neq \frac{\sqrt{39}}{2}
Solve for x
x=-\frac{2}{4g^{2}-39}
|g|\neq \frac{\sqrt{39}}{2}
Solve for g (complex solution)
g=-\frac{\sqrt{39-\frac{2}{x}}}{2}
g=\frac{\sqrt{39-\frac{2}{x}}}{2}\text{, }x\neq 0
Solve for g
g=\frac{\sqrt{39-\frac{2}{x}}}{2}
g=-\frac{\sqrt{39-\frac{2}{x}}}{2}\text{, }x\geq \frac{2}{39}\text{ or }x<0
Graph
Share
Copied to clipboard
4g^{2}x-39x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(4g^{2}-39\right)x=-2
Combine all terms containing x.
\frac{\left(4g^{2}-39\right)x}{4g^{2}-39}=-\frac{2}{4g^{2}-39}
Divide both sides by 4g^{2}-39.
x=-\frac{2}{4g^{2}-39}
Dividing by 4g^{2}-39 undoes the multiplication by 4g^{2}-39.
4g^{2}x-39x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\left(4g^{2}-39\right)x=-2
Combine all terms containing x.
\frac{\left(4g^{2}-39\right)x}{4g^{2}-39}=-\frac{2}{4g^{2}-39}
Divide both sides by 4g^{2}-39.
x=-\frac{2}{4g^{2}-39}
Dividing by 4g^{2}-39 undoes the multiplication by 4g^{2}-39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}