Solve for f
f=\sqrt{183}+14\approx 27.527749258
f=14-\sqrt{183}\approx 0.472250742
Share
Copied to clipboard
4f^{2}-112f=-52
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4f^{2}-112f-\left(-52\right)=-52-\left(-52\right)
Add 52 to both sides of the equation.
4f^{2}-112f-\left(-52\right)=0
Subtracting -52 from itself leaves 0.
4f^{2}-112f+52=0
Subtract -52 from 0.
f=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\times 4\times 52}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -112 for b, and 52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{-\left(-112\right)±\sqrt{12544-4\times 4\times 52}}{2\times 4}
Square -112.
f=\frac{-\left(-112\right)±\sqrt{12544-16\times 52}}{2\times 4}
Multiply -4 times 4.
f=\frac{-\left(-112\right)±\sqrt{12544-832}}{2\times 4}
Multiply -16 times 52.
f=\frac{-\left(-112\right)±\sqrt{11712}}{2\times 4}
Add 12544 to -832.
f=\frac{-\left(-112\right)±8\sqrt{183}}{2\times 4}
Take the square root of 11712.
f=\frac{112±8\sqrt{183}}{2\times 4}
The opposite of -112 is 112.
f=\frac{112±8\sqrt{183}}{8}
Multiply 2 times 4.
f=\frac{8\sqrt{183}+112}{8}
Now solve the equation f=\frac{112±8\sqrt{183}}{8} when ± is plus. Add 112 to 8\sqrt{183}.
f=\sqrt{183}+14
Divide 112+8\sqrt{183} by 8.
f=\frac{112-8\sqrt{183}}{8}
Now solve the equation f=\frac{112±8\sqrt{183}}{8} when ± is minus. Subtract 8\sqrt{183} from 112.
f=14-\sqrt{183}
Divide 112-8\sqrt{183} by 8.
f=\sqrt{183}+14 f=14-\sqrt{183}
The equation is now solved.
4f^{2}-112f=-52
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4f^{2}-112f}{4}=-\frac{52}{4}
Divide both sides by 4.
f^{2}+\left(-\frac{112}{4}\right)f=-\frac{52}{4}
Dividing by 4 undoes the multiplication by 4.
f^{2}-28f=-\frac{52}{4}
Divide -112 by 4.
f^{2}-28f=-13
Divide -52 by 4.
f^{2}-28f+\left(-14\right)^{2}=-13+\left(-14\right)^{2}
Divide -28, the coefficient of the x term, by 2 to get -14. Then add the square of -14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
f^{2}-28f+196=-13+196
Square -14.
f^{2}-28f+196=183
Add -13 to 196.
\left(f-14\right)^{2}=183
Factor f^{2}-28f+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(f-14\right)^{2}}=\sqrt{183}
Take the square root of both sides of the equation.
f-14=\sqrt{183} f-14=-\sqrt{183}
Simplify.
f=\sqrt{183}+14 f=14-\sqrt{183}
Add 14 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}