Solve for a
a=2b-\frac{3}{2}
Solve for b
b=\frac{a}{2}+\frac{3}{4}
Share
Copied to clipboard
-2a=3-4b
Subtract 4b from both sides.
\frac{-2a}{-2}=\frac{3-4b}{-2}
Divide both sides by -2.
a=\frac{3-4b}{-2}
Dividing by -2 undoes the multiplication by -2.
a=2b-\frac{3}{2}
Divide 3-4b by -2.
4b=3+2a
Add 2a to both sides.
4b=2a+3
The equation is in standard form.
\frac{4b}{4}=\frac{2a+3}{4}
Divide both sides by 4.
b=\frac{2a+3}{4}
Dividing by 4 undoes the multiplication by 4.
b=\frac{a}{2}+\frac{3}{4}
Divide 3+2a by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}