Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{x^{2}-bx-5x+c+2b}{x\left(4-x\right)}\text{, }&x\neq 4\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&\left(b=-\frac{c}{2}\text{ and }x=0\right)\text{ or }\left(b=\frac{c}{2}-2\text{ and }x=4\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{c-5x+4ax+x^{2}-ax^{2}}{2-x}\text{, }&x\neq 2\\b\in \mathrm{C}\text{, }&a=-\frac{c}{4}+\frac{3}{2}\text{ and }x=2\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{x^{2}-bx-5x+c+2b}{x\left(4-x\right)}\text{, }&x\neq 4\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&\left(b=-\frac{c}{2}\text{ and }x=0\right)\text{ or }\left(b=\frac{c}{2}-2\text{ and }x=4\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{c-5x+4ax+x^{2}-ax^{2}}{2-x}\text{, }&x\neq 2\\b\in \mathrm{R}\text{, }&a=-\frac{c}{4}+\frac{3}{2}\text{ and }x=2\end{matrix}\right.
Graph
Share
Copied to clipboard
4ax+2b-ax^{2}+c=-x^{2}+5x+bx
Add bx to both sides.
4ax+2b-ax^{2}=-x^{2}+5x+bx-c
Subtract c from both sides.
4ax-ax^{2}=-x^{2}+5x+bx-c-2b
Subtract 2b from both sides.
\left(4x-x^{2}\right)a=-x^{2}+5x+bx-c-2b
Combine all terms containing a.
\left(4x-x^{2}\right)a=-x^{2}+bx+5x-c-2b
The equation is in standard form.
\frac{\left(4x-x^{2}\right)a}{4x-x^{2}}=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Divide both sides by -x^{2}+4x.
a=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Dividing by -x^{2}+4x undoes the multiplication by -x^{2}+4x.
a=\frac{-x^{2}+bx+5x-c-2b}{x\left(4-x\right)}
Divide -x^{2}+5x+bx-c-2b by -x^{2}+4x.
4ax+2b-ax^{2}-bx=-x^{2}+5x-c
Subtract c from both sides.
2b-ax^{2}-bx=-x^{2}+5x-c-4ax
Subtract 4ax from both sides.
2b-bx=-x^{2}+5x-c-4ax+ax^{2}
Add ax^{2} to both sides.
\left(2-x\right)b=-x^{2}+5x-c-4ax+ax^{2}
Combine all terms containing b.
\left(2-x\right)b=ax^{2}-x^{2}-4ax+5x-c
The equation is in standard form.
\frac{\left(2-x\right)b}{2-x}=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Divide both sides by -x+2.
b=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Dividing by -x+2 undoes the multiplication by -x+2.
4ax+2b-ax^{2}+c=-x^{2}+5x+bx
Add bx to both sides.
4ax+2b-ax^{2}=-x^{2}+5x+bx-c
Subtract c from both sides.
4ax-ax^{2}=-x^{2}+5x+bx-c-2b
Subtract 2b from both sides.
\left(4x-x^{2}\right)a=-x^{2}+5x+bx-c-2b
Combine all terms containing a.
\left(4x-x^{2}\right)a=-x^{2}+bx+5x-c-2b
The equation is in standard form.
\frac{\left(4x-x^{2}\right)a}{4x-x^{2}}=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Divide both sides by 4x-x^{2}.
a=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Dividing by 4x-x^{2} undoes the multiplication by 4x-x^{2}.
a=\frac{-x^{2}+bx+5x-c-2b}{x\left(4-x\right)}
Divide -x^{2}+5x+bx-c-2b by 4x-x^{2}.
4ax+2b-ax^{2}-bx=-x^{2}+5x-c
Subtract c from both sides.
2b-ax^{2}-bx=-x^{2}+5x-c-4ax
Subtract 4ax from both sides.
2b-bx=-x^{2}+5x-c-4ax+ax^{2}
Add ax^{2} to both sides.
\left(2-x\right)b=-x^{2}+5x-c-4ax+ax^{2}
Combine all terms containing b.
\left(2-x\right)b=ax^{2}-x^{2}-4ax+5x-c
The equation is in standard form.
\frac{\left(2-x\right)b}{2-x}=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Divide both sides by -x+2.
b=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Dividing by -x+2 undoes the multiplication by -x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}