Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

4ax+2b-ax^{2}+c=-x^{2}+5x+bx
Add bx to both sides.
4ax+2b-ax^{2}=-x^{2}+5x+bx-c
Subtract c from both sides.
4ax-ax^{2}=-x^{2}+5x+bx-c-2b
Subtract 2b from both sides.
\left(4x-x^{2}\right)a=-x^{2}+5x+bx-c-2b
Combine all terms containing a.
\left(4x-x^{2}\right)a=-x^{2}+bx+5x-c-2b
The equation is in standard form.
\frac{\left(4x-x^{2}\right)a}{4x-x^{2}}=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Divide both sides by -x^{2}+4x.
a=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Dividing by -x^{2}+4x undoes the multiplication by -x^{2}+4x.
a=\frac{-x^{2}+bx+5x-c-2b}{x\left(4-x\right)}
Divide -x^{2}+5x+bx-c-2b by -x^{2}+4x.
4ax+2b-ax^{2}-bx=-x^{2}+5x-c
Subtract c from both sides.
2b-ax^{2}-bx=-x^{2}+5x-c-4ax
Subtract 4ax from both sides.
2b-bx=-x^{2}+5x-c-4ax+ax^{2}
Add ax^{2} to both sides.
\left(2-x\right)b=-x^{2}+5x-c-4ax+ax^{2}
Combine all terms containing b.
\left(2-x\right)b=ax^{2}-x^{2}-4ax+5x-c
The equation is in standard form.
\frac{\left(2-x\right)b}{2-x}=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Divide both sides by -x+2.
b=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Dividing by -x+2 undoes the multiplication by -x+2.
4ax+2b-ax^{2}+c=-x^{2}+5x+bx
Add bx to both sides.
4ax+2b-ax^{2}=-x^{2}+5x+bx-c
Subtract c from both sides.
4ax-ax^{2}=-x^{2}+5x+bx-c-2b
Subtract 2b from both sides.
\left(4x-x^{2}\right)a=-x^{2}+5x+bx-c-2b
Combine all terms containing a.
\left(4x-x^{2}\right)a=-x^{2}+bx+5x-c-2b
The equation is in standard form.
\frac{\left(4x-x^{2}\right)a}{4x-x^{2}}=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Divide both sides by 4x-x^{2}.
a=\frac{-x^{2}+bx+5x-c-2b}{4x-x^{2}}
Dividing by 4x-x^{2} undoes the multiplication by 4x-x^{2}.
a=\frac{-x^{2}+bx+5x-c-2b}{x\left(4-x\right)}
Divide -x^{2}+5x+bx-c-2b by 4x-x^{2}.
4ax+2b-ax^{2}-bx=-x^{2}+5x-c
Subtract c from both sides.
2b-ax^{2}-bx=-x^{2}+5x-c-4ax
Subtract 4ax from both sides.
2b-bx=-x^{2}+5x-c-4ax+ax^{2}
Add ax^{2} to both sides.
\left(2-x\right)b=-x^{2}+5x-c-4ax+ax^{2}
Combine all terms containing b.
\left(2-x\right)b=ax^{2}-x^{2}-4ax+5x-c
The equation is in standard form.
\frac{\left(2-x\right)b}{2-x}=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Divide both sides by -x+2.
b=\frac{ax^{2}-x^{2}-4ax+5x-c}{2-x}
Dividing by -x+2 undoes the multiplication by -x+2.