4 a - 3 ( 2 a + 1 ) = 5 ( 2 a - 1 ) - 3 ( 3 a
Solve for a
a=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
4a-6a-3=5\left(2a-1\right)-3\times 3a
Use the distributive property to multiply -3 by 2a+1.
-2a-3=5\left(2a-1\right)-3\times 3a
Combine 4a and -6a to get -2a.
-2a-3=10a-5-3\times 3a
Use the distributive property to multiply 5 by 2a-1.
-2a-3=10a-5-9a
Multiply 3 and 3 to get 9.
-2a-3=a-5
Combine 10a and -9a to get a.
-2a-3-a=-5
Subtract a from both sides.
-3a-3=-5
Combine -2a and -a to get -3a.
-3a=-5+3
Add 3 to both sides.
-3a=-2
Add -5 and 3 to get -2.
a=\frac{-2}{-3}
Divide both sides by -3.
a=\frac{2}{3}
Fraction \frac{-2}{-3} can be simplified to \frac{2}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}