Evaluate
5a+4b
Expand
5a+4b
Share
Copied to clipboard
4a-2b+4a+4b-\left(3a-2b\right)
Use the distributive property to multiply 4 by a+b.
8a-2b+4b-\left(3a-2b\right)
Combine 4a and 4a to get 8a.
8a+2b-\left(3a-2b\right)
Combine -2b and 4b to get 2b.
8a+2b-3a-\left(-2b\right)
To find the opposite of 3a-2b, find the opposite of each term.
8a+2b-3a+2b
The opposite of -2b is 2b.
5a+2b+2b
Combine 8a and -3a to get 5a.
5a+4b
Combine 2b and 2b to get 4b.
4a-2b+4a+4b-\left(3a-2b\right)
Use the distributive property to multiply 4 by a+b.
8a-2b+4b-\left(3a-2b\right)
Combine 4a and 4a to get 8a.
8a+2b-\left(3a-2b\right)
Combine -2b and 4b to get 2b.
8a+2b-3a-\left(-2b\right)
To find the opposite of 3a-2b, find the opposite of each term.
8a+2b-3a+2b
The opposite of -2b is 2b.
5a+2b+2b
Combine 8a and -3a to get 5a.
5a+4b
Combine 2b and 2b to get 4b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}