Solve for a
a=\frac{b-14}{16}
Solve for b
b=16a+14
Share
Copied to clipboard
16a-b=-14
Multiply both sides of the equation by 4, the least common multiple of 4,2.
16a=-14+b
Add b to both sides.
16a=b-14
The equation is in standard form.
\frac{16a}{16}=\frac{b-14}{16}
Divide both sides by 16.
a=\frac{b-14}{16}
Dividing by 16 undoes the multiplication by 16.
a=\frac{b}{16}-\frac{7}{8}
Divide -14+b by 16.
16a-b=-14
Multiply both sides of the equation by 4, the least common multiple of 4,2.
-b=-14-16a
Subtract 16a from both sides.
-b=-16a-14
The equation is in standard form.
\frac{-b}{-1}=\frac{-16a-14}{-1}
Divide both sides by -1.
b=\frac{-16a-14}{-1}
Dividing by -1 undoes the multiplication by -1.
b=16a+14
Divide -14-16a by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}