Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4a^{2}-12a-9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-9\right)}}{2\times 4}
Square -12.
a=\frac{-\left(-12\right)±\sqrt{144-16\left(-9\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-\left(-12\right)±\sqrt{144+144}}{2\times 4}
Multiply -16 times -9.
a=\frac{-\left(-12\right)±\sqrt{288}}{2\times 4}
Add 144 to 144.
a=\frac{-\left(-12\right)±12\sqrt{2}}{2\times 4}
Take the square root of 288.
a=\frac{12±12\sqrt{2}}{2\times 4}
The opposite of -12 is 12.
a=\frac{12±12\sqrt{2}}{8}
Multiply 2 times 4.
a=\frac{12\sqrt{2}+12}{8}
Now solve the equation a=\frac{12±12\sqrt{2}}{8} when ± is plus. Add 12 to 12\sqrt{2}.
a=\frac{3\sqrt{2}+3}{2}
Divide 12+12\sqrt{2} by 8.
a=\frac{12-12\sqrt{2}}{8}
Now solve the equation a=\frac{12±12\sqrt{2}}{8} when ± is minus. Subtract 12\sqrt{2} from 12.
a=\frac{3-3\sqrt{2}}{2}
Divide 12-12\sqrt{2} by 8.
4a^{2}-12a-9=4\left(a-\frac{3\sqrt{2}+3}{2}\right)\left(a-\frac{3-3\sqrt{2}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3+3\sqrt{2}}{2} for x_{1} and \frac{3-3\sqrt{2}}{2} for x_{2}.