Solve for a
a=\frac{1}{2}=0.5
a=1
Share
Copied to clipboard
4a^{2}-6a-1+3=0
Add 3 to both sides.
4a^{2}-6a+2=0
Add -1 and 3 to get 2.
2a^{2}-3a+1=0
Divide both sides by 2.
a+b=-3 ab=2\times 1=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2a^{2}+aa+ba+1. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(2a^{2}-2a\right)+\left(-a+1\right)
Rewrite 2a^{2}-3a+1 as \left(2a^{2}-2a\right)+\left(-a+1\right).
2a\left(a-1\right)-\left(a-1\right)
Factor out 2a in the first and -1 in the second group.
\left(a-1\right)\left(2a-1\right)
Factor out common term a-1 by using distributive property.
a=1 a=\frac{1}{2}
To find equation solutions, solve a-1=0 and 2a-1=0.
4a^{2}-6a-1=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4a^{2}-6a-1-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
4a^{2}-6a-1-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
4a^{2}-6a+2=0
Subtract -3 from -1.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4\times 2}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -6 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\right)±\sqrt{36-4\times 4\times 2}}{2\times 4}
Square -6.
a=\frac{-\left(-6\right)±\sqrt{36-16\times 2}}{2\times 4}
Multiply -4 times 4.
a=\frac{-\left(-6\right)±\sqrt{36-32}}{2\times 4}
Multiply -16 times 2.
a=\frac{-\left(-6\right)±\sqrt{4}}{2\times 4}
Add 36 to -32.
a=\frac{-\left(-6\right)±2}{2\times 4}
Take the square root of 4.
a=\frac{6±2}{2\times 4}
The opposite of -6 is 6.
a=\frac{6±2}{8}
Multiply 2 times 4.
a=\frac{8}{8}
Now solve the equation a=\frac{6±2}{8} when ± is plus. Add 6 to 2.
a=1
Divide 8 by 8.
a=\frac{4}{8}
Now solve the equation a=\frac{6±2}{8} when ± is minus. Subtract 2 from 6.
a=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
a=1 a=\frac{1}{2}
The equation is now solved.
4a^{2}-6a-1=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4a^{2}-6a-1-\left(-1\right)=-3-\left(-1\right)
Add 1 to both sides of the equation.
4a^{2}-6a=-3-\left(-1\right)
Subtracting -1 from itself leaves 0.
4a^{2}-6a=-2
Subtract -1 from -3.
\frac{4a^{2}-6a}{4}=-\frac{2}{4}
Divide both sides by 4.
a^{2}+\left(-\frac{6}{4}\right)a=-\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
a^{2}-\frac{3}{2}a=-\frac{2}{4}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{3}{2}a=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{3}{2}a+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{3}{2}a+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{3}{2}a+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor a^{2}-\frac{3}{2}a+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
a-\frac{3}{4}=\frac{1}{4} a-\frac{3}{4}=-\frac{1}{4}
Simplify.
a=1 a=\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}