Evaluate
4a\left(a^{3}-a^{2}+5a-4\right)
Expand
4a^{4}-4a^{3}+20a^{2}-16a
Share
Copied to clipboard
4a^{2}-4a\left(4-\left(4a-a^{2}+a^{3}\right)\right)
Use the distributive property to multiply a by 4-a+a^{2}.
4a^{2}-4a\left(4-4a+a^{2}-a^{3}\right)
To find the opposite of 4a-a^{2}+a^{3}, find the opposite of each term.
4a^{2}-16a+16a^{2}-4a^{3}+4a^{4}
Use the distributive property to multiply -4a by 4-4a+a^{2}-a^{3}.
20a^{2}-16a-4a^{3}+4a^{4}
Combine 4a^{2} and 16a^{2} to get 20a^{2}.
4a^{2}-4a\left(4-\left(4a-a^{2}+a^{3}\right)\right)
Use the distributive property to multiply a by 4-a+a^{2}.
4a^{2}-4a\left(4-4a+a^{2}-a^{3}\right)
To find the opposite of 4a-a^{2}+a^{3}, find the opposite of each term.
4a^{2}-16a+16a^{2}-4a^{3}+4a^{4}
Use the distributive property to multiply -4a by 4-4a+a^{2}-a^{3}.
20a^{2}-16a-4a^{3}+4a^{4}
Combine 4a^{2} and 16a^{2} to get 20a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}