Solve for a
a\in (-\infty,0]\cup [3,\infty)
Share
Copied to clipboard
4a\left(a-3\right)\geq 0
Factor out a.
a\leq 0 a-3\leq 0
For the product to be ≥0, a and a-3 have to be both ≤0 or both ≥0. Consider the case when a and a-3 are both ≤0.
a\leq 0
The solution satisfying both inequalities is a\leq 0.
a-3\geq 0 a\geq 0
Consider the case when a and a-3 are both ≥0.
a\geq 3
The solution satisfying both inequalities is a\geq 3.
a\leq 0\text{; }a\geq 3
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}