Solve for a
a = \frac{\sqrt{13} + 1}{4} \approx 1.151387819
a=\frac{1-\sqrt{13}}{4}\approx -0.651387819
Share
Copied to clipboard
4a^{2}-2a=3
Subtract 2a from both sides.
4a^{2}-2a-3=0
Subtract 3 from both sides.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\times 4\left(-3\right)}}{2\times 4}
Square -2.
a=\frac{-\left(-2\right)±\sqrt{4-16\left(-3\right)}}{2\times 4}
Multiply -4 times 4.
a=\frac{-\left(-2\right)±\sqrt{4+48}}{2\times 4}
Multiply -16 times -3.
a=\frac{-\left(-2\right)±\sqrt{52}}{2\times 4}
Add 4 to 48.
a=\frac{-\left(-2\right)±2\sqrt{13}}{2\times 4}
Take the square root of 52.
a=\frac{2±2\sqrt{13}}{2\times 4}
The opposite of -2 is 2.
a=\frac{2±2\sqrt{13}}{8}
Multiply 2 times 4.
a=\frac{2\sqrt{13}+2}{8}
Now solve the equation a=\frac{2±2\sqrt{13}}{8} when ± is plus. Add 2 to 2\sqrt{13}.
a=\frac{\sqrt{13}+1}{4}
Divide 2+2\sqrt{13} by 8.
a=\frac{2-2\sqrt{13}}{8}
Now solve the equation a=\frac{2±2\sqrt{13}}{8} when ± is minus. Subtract 2\sqrt{13} from 2.
a=\frac{1-\sqrt{13}}{4}
Divide 2-2\sqrt{13} by 8.
a=\frac{\sqrt{13}+1}{4} a=\frac{1-\sqrt{13}}{4}
The equation is now solved.
4a^{2}-2a=3
Subtract 2a from both sides.
\frac{4a^{2}-2a}{4}=\frac{3}{4}
Divide both sides by 4.
a^{2}+\left(-\frac{2}{4}\right)a=\frac{3}{4}
Dividing by 4 undoes the multiplication by 4.
a^{2}-\frac{1}{2}a=\frac{3}{4}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
a^{2}-\frac{1}{2}a+\left(-\frac{1}{4}\right)^{2}=\frac{3}{4}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\frac{3}{4}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\frac{13}{16}
Add \frac{3}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{1}{4}\right)^{2}=\frac{13}{16}
Factor a^{2}-\frac{1}{2}a+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
Take the square root of both sides of the equation.
a-\frac{1}{4}=\frac{\sqrt{13}}{4} a-\frac{1}{4}=-\frac{\sqrt{13}}{4}
Simplify.
a=\frac{\sqrt{13}+1}{4} a=\frac{1-\sqrt{13}}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}