Solve for P
P=\frac{\sqrt{3}}{6}\approx 0.288675135
P=-\frac{\sqrt{3}}{6}\approx -0.288675135
Share
Copied to clipboard
4P^{2}=\frac{1}{3}
Add \frac{1}{4} and \frac{1}{12} to get \frac{1}{3}.
P^{2}=\frac{\frac{1}{3}}{4}
Divide both sides by 4.
P^{2}=\frac{1}{3\times 4}
Express \frac{\frac{1}{3}}{4} as a single fraction.
P^{2}=\frac{1}{12}
Multiply 3 and 4 to get 12.
P=\frac{\sqrt{3}}{6} P=-\frac{\sqrt{3}}{6}
Take the square root of both sides of the equation.
4P^{2}=\frac{1}{3}
Add \frac{1}{4} and \frac{1}{12} to get \frac{1}{3}.
4P^{2}-\frac{1}{3}=0
Subtract \frac{1}{3} from both sides.
P=\frac{0±\sqrt{0^{2}-4\times 4\left(-\frac{1}{3}\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -\frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
P=\frac{0±\sqrt{-4\times 4\left(-\frac{1}{3}\right)}}{2\times 4}
Square 0.
P=\frac{0±\sqrt{-16\left(-\frac{1}{3}\right)}}{2\times 4}
Multiply -4 times 4.
P=\frac{0±\sqrt{\frac{16}{3}}}{2\times 4}
Multiply -16 times -\frac{1}{3}.
P=\frac{0±\frac{4\sqrt{3}}{3}}{2\times 4}
Take the square root of \frac{16}{3}.
P=\frac{0±\frac{4\sqrt{3}}{3}}{8}
Multiply 2 times 4.
P=\frac{\sqrt{3}}{6}
Now solve the equation P=\frac{0±\frac{4\sqrt{3}}{3}}{8} when ± is plus.
P=-\frac{\sqrt{3}}{6}
Now solve the equation P=\frac{0±\frac{4\sqrt{3}}{3}}{8} when ± is minus.
P=\frac{\sqrt{3}}{6} P=-\frac{\sqrt{3}}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}