Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{-5x-y^{2}}{2xy}\text{, }&y\neq 0\text{ and }x\neq 0\\A\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{-5x-y^{2}}{2xy}\text{, }&y\neq 0\text{ and }x\neq 0\\A\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
x=-\frac{y^{2}}{2Ay+5}
y=0\text{ or }A\neq -\frac{5}{2y}
Graph
Share
Copied to clipboard
4Axy=-10x-2y^{2}
Subtract 2y^{2} from both sides.
4xyA=-10x-2y^{2}
The equation is in standard form.
\frac{4xyA}{4xy}=\frac{-10x-2y^{2}}{4xy}
Divide both sides by 4xy.
A=\frac{-10x-2y^{2}}{4xy}
Dividing by 4xy undoes the multiplication by 4xy.
A=-\frac{y}{2x}-\frac{5}{2y}
Divide -2y^{2}-10x by 4xy.
4Axy=-10x-2y^{2}
Subtract 2y^{2} from both sides.
4xyA=-10x-2y^{2}
The equation is in standard form.
\frac{4xyA}{4xy}=\frac{-10x-2y^{2}}{4xy}
Divide both sides by 4xy.
A=\frac{-10x-2y^{2}}{4xy}
Dividing by 4xy undoes the multiplication by 4xy.
A=-\frac{y}{2x}-\frac{5}{2y}
Divide -10x-2y^{2} by 4xy.
4Axy+2y^{2}+10x=0
Add 10x to both sides.
4Axy+10x=-2y^{2}
Subtract 2y^{2} from both sides. Anything subtracted from zero gives its negation.
\left(4Ay+10\right)x=-2y^{2}
Combine all terms containing x.
\frac{\left(4Ay+10\right)x}{4Ay+10}=-\frac{2y^{2}}{4Ay+10}
Divide both sides by 4Ay+10.
x=-\frac{2y^{2}}{4Ay+10}
Dividing by 4Ay+10 undoes the multiplication by 4Ay+10.
x=-\frac{y^{2}}{2Ay+5}
Divide -2y^{2} by 4Ay+10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}