Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(4-x^{2}+5x)
Combine 3x and 2x to get 5x.
-x^{2}+5x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25+16}}{2\left(-1\right)}
Multiply 4 times 4.
x=\frac{-5±\sqrt{41}}{2\left(-1\right)}
Add 25 to 16.
x=\frac{-5±\sqrt{41}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{41}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{41}}{-2} when ± is plus. Add -5 to \sqrt{41}.
x=\frac{5-\sqrt{41}}{2}
Divide -5+\sqrt{41} by -2.
x=\frac{-\sqrt{41}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{41}}{-2} when ± is minus. Subtract \sqrt{41} from -5.
x=\frac{\sqrt{41}+5}{2}
Divide -5-\sqrt{41} by -2.
-x^{2}+5x+4=-\left(x-\frac{5-\sqrt{41}}{2}\right)\left(x-\frac{\sqrt{41}+5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5-\sqrt{41}}{2} for x_{1} and \frac{5+\sqrt{41}}{2} for x_{2}.
4-x^{2}+5x
Combine 3x and 2x to get 5x.