Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4-a-\frac{1}{2}a^{2}=-\frac{5}{2}a+3
Subtract \frac{1}{2}a^{2} from both sides.
4-a-\frac{1}{2}a^{2}+\frac{5}{2}a=3
Add \frac{5}{2}a to both sides.
4+\frac{3}{2}a-\frac{1}{2}a^{2}=3
Combine -a and \frac{5}{2}a to get \frac{3}{2}a.
4+\frac{3}{2}a-\frac{1}{2}a^{2}-3=0
Subtract 3 from both sides.
1+\frac{3}{2}a-\frac{1}{2}a^{2}=0
Subtract 3 from 4 to get 1.
-\frac{1}{2}a^{2}+\frac{3}{2}a+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{3}{2} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+2}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
a=\frac{-\frac{3}{2}±\sqrt{\frac{17}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{9}{4} to 2.
a=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{17}{4}.
a=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
a=\frac{\sqrt{17}-3}{-2}
Now solve the equation a=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{-1} when ± is plus. Add -\frac{3}{2} to \frac{\sqrt{17}}{2}.
a=\frac{3-\sqrt{17}}{2}
Divide \frac{-3+\sqrt{17}}{2} by -1.
a=\frac{-\sqrt{17}-3}{-2}
Now solve the equation a=\frac{-\frac{3}{2}±\frac{\sqrt{17}}{2}}{-1} when ± is minus. Subtract \frac{\sqrt{17}}{2} from -\frac{3}{2}.
a=\frac{\sqrt{17}+3}{2}
Divide \frac{-3-\sqrt{17}}{2} by -1.
a=\frac{3-\sqrt{17}}{2} a=\frac{\sqrt{17}+3}{2}
The equation is now solved.
4-a-\frac{1}{2}a^{2}=-\frac{5}{2}a+3
Subtract \frac{1}{2}a^{2} from both sides.
4-a-\frac{1}{2}a^{2}+\frac{5}{2}a=3
Add \frac{5}{2}a to both sides.
4+\frac{3}{2}a-\frac{1}{2}a^{2}=3
Combine -a and \frac{5}{2}a to get \frac{3}{2}a.
\frac{3}{2}a-\frac{1}{2}a^{2}=3-4
Subtract 4 from both sides.
\frac{3}{2}a-\frac{1}{2}a^{2}=-1
Subtract 4 from 3 to get -1.
-\frac{1}{2}a^{2}+\frac{3}{2}a=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}a^{2}+\frac{3}{2}a}{-\frac{1}{2}}=-\frac{1}{-\frac{1}{2}}
Multiply both sides by -2.
a^{2}+\frac{\frac{3}{2}}{-\frac{1}{2}}a=-\frac{1}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
a^{2}-3a=-\frac{1}{-\frac{1}{2}}
Divide \frac{3}{2} by -\frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{1}{2}.
a^{2}-3a=2
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-3a+\frac{9}{4}=2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-3a+\frac{9}{4}=\frac{17}{4}
Add 2 to \frac{9}{4}.
\left(a-\frac{3}{2}\right)^{2}=\frac{17}{4}
Factor a^{2}-3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
a-\frac{3}{2}=\frac{\sqrt{17}}{2} a-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Simplify.
a=\frac{\sqrt{17}+3}{2} a=\frac{3-\sqrt{17}}{2}
Add \frac{3}{2} to both sides of the equation.