Solve for t
t=\frac{x_{2}+12}{2}
Solve for x_2
x_{2}=2\left(t-6\right)
Share
Copied to clipboard
4-4t=-2\left(10+x_{2}\right)
Multiply 4 and -\frac{1}{2} to get -2.
4-4t=-20-2x_{2}
Use the distributive property to multiply -2 by 10+x_{2}.
-4t=-20-2x_{2}-4
Subtract 4 from both sides.
-4t=-24-2x_{2}
Subtract 4 from -20 to get -24.
-4t=-2x_{2}-24
The equation is in standard form.
\frac{-4t}{-4}=\frac{-2x_{2}-24}{-4}
Divide both sides by -4.
t=\frac{-2x_{2}-24}{-4}
Dividing by -4 undoes the multiplication by -4.
t=\frac{x_{2}}{2}+6
Divide -24-2x_{2} by -4.
4-4t=-2\left(10+x_{2}\right)
Multiply 4 and -\frac{1}{2} to get -2.
4-4t=-20-2x_{2}
Use the distributive property to multiply -2 by 10+x_{2}.
-20-2x_{2}=4-4t
Swap sides so that all variable terms are on the left hand side.
-2x_{2}=4-4t+20
Add 20 to both sides.
-2x_{2}=24-4t
Add 4 and 20 to get 24.
\frac{-2x_{2}}{-2}=\frac{24-4t}{-2}
Divide both sides by -2.
x_{2}=\frac{24-4t}{-2}
Dividing by -2 undoes the multiplication by -2.
x_{2}=2t-12
Divide 24-4t by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}