Solve for t
t=\frac{4\sqrt{13}-8}{9}\approx 0.713578345
t=\frac{-4\sqrt{13}-8}{9}\approx -2.491356122
Share
Copied to clipboard
4-4t-2.25t^{2}=0
Subtract 2.25t^{2} from both sides.
-2.25t^{2}-4t+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-2.25\right)\times 4}}{2\left(-2.25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2.25 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-4\right)±\sqrt{16-4\left(-2.25\right)\times 4}}{2\left(-2.25\right)}
Square -4.
t=\frac{-\left(-4\right)±\sqrt{16+9\times 4}}{2\left(-2.25\right)}
Multiply -4 times -2.25.
t=\frac{-\left(-4\right)±\sqrt{16+36}}{2\left(-2.25\right)}
Multiply 9 times 4.
t=\frac{-\left(-4\right)±\sqrt{52}}{2\left(-2.25\right)}
Add 16 to 36.
t=\frac{-\left(-4\right)±2\sqrt{13}}{2\left(-2.25\right)}
Take the square root of 52.
t=\frac{4±2\sqrt{13}}{2\left(-2.25\right)}
The opposite of -4 is 4.
t=\frac{4±2\sqrt{13}}{-4.5}
Multiply 2 times -2.25.
t=\frac{2\sqrt{13}+4}{-4.5}
Now solve the equation t=\frac{4±2\sqrt{13}}{-4.5} when ± is plus. Add 4 to 2\sqrt{13}.
t=\frac{-4\sqrt{13}-8}{9}
Divide 4+2\sqrt{13} by -4.5 by multiplying 4+2\sqrt{13} by the reciprocal of -4.5.
t=\frac{4-2\sqrt{13}}{-4.5}
Now solve the equation t=\frac{4±2\sqrt{13}}{-4.5} when ± is minus. Subtract 2\sqrt{13} from 4.
t=\frac{4\sqrt{13}-8}{9}
Divide 4-2\sqrt{13} by -4.5 by multiplying 4-2\sqrt{13} by the reciprocal of -4.5.
t=\frac{-4\sqrt{13}-8}{9} t=\frac{4\sqrt{13}-8}{9}
The equation is now solved.
4-4t-2.25t^{2}=0
Subtract 2.25t^{2} from both sides.
-4t-2.25t^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
-2.25t^{2}-4t=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2.25t^{2}-4t}{-2.25}=-\frac{4}{-2.25}
Divide both sides of the equation by -2.25, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{4}{-2.25}\right)t=-\frac{4}{-2.25}
Dividing by -2.25 undoes the multiplication by -2.25.
t^{2}+\frac{16}{9}t=-\frac{4}{-2.25}
Divide -4 by -2.25 by multiplying -4 by the reciprocal of -2.25.
t^{2}+\frac{16}{9}t=\frac{16}{9}
Divide -4 by -2.25 by multiplying -4 by the reciprocal of -2.25.
t^{2}+\frac{16}{9}t+\frac{8}{9}^{2}=\frac{16}{9}+\frac{8}{9}^{2}
Divide \frac{16}{9}, the coefficient of the x term, by 2 to get \frac{8}{9}. Then add the square of \frac{8}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{16}{9}t+\frac{64}{81}=\frac{16}{9}+\frac{64}{81}
Square \frac{8}{9} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{16}{9}t+\frac{64}{81}=\frac{208}{81}
Add \frac{16}{9} to \frac{64}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{8}{9}\right)^{2}=\frac{208}{81}
Factor t^{2}+\frac{16}{9}t+\frac{64}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{8}{9}\right)^{2}}=\sqrt{\frac{208}{81}}
Take the square root of both sides of the equation.
t+\frac{8}{9}=\frac{4\sqrt{13}}{9} t+\frac{8}{9}=-\frac{4\sqrt{13}}{9}
Simplify.
t=\frac{4\sqrt{13}-8}{9} t=\frac{-4\sqrt{13}-8}{9}
Subtract \frac{8}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}