Solve for x
x\geq \frac{19}{12}
Graph
Share
Copied to clipboard
-3x\leq -\frac{3}{4}-4
Subtract 4 from both sides.
-3x\leq -\frac{3}{4}-\frac{16}{4}
Convert 4 to fraction \frac{16}{4}.
-3x\leq \frac{-3-16}{4}
Since -\frac{3}{4} and \frac{16}{4} have the same denominator, subtract them by subtracting their numerators.
-3x\leq -\frac{19}{4}
Subtract 16 from -3 to get -19.
x\geq \frac{-\frac{19}{4}}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
x\geq \frac{-19}{4\left(-3\right)}
Express \frac{-\frac{19}{4}}{-3} as a single fraction.
x\geq \frac{-19}{-12}
Multiply 4 and -3 to get -12.
x\geq \frac{19}{12}
Fraction \frac{-19}{-12} can be simplified to \frac{19}{12} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}