Solve for x
x=\frac{\sqrt{281}-13}{14}\approx 0.268789615
x=\frac{-\sqrt{281}-13}{14}\approx -2.125932472
Graph
Share
Copied to clipboard
-7x^{2}-13x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-7\right)\times 4}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, -13 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\left(-7\right)\times 4}}{2\left(-7\right)}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169+28\times 4}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\left(-13\right)±\sqrt{169+112}}{2\left(-7\right)}
Multiply 28 times 4.
x=\frac{-\left(-13\right)±\sqrt{281}}{2\left(-7\right)}
Add 169 to 112.
x=\frac{13±\sqrt{281}}{2\left(-7\right)}
The opposite of -13 is 13.
x=\frac{13±\sqrt{281}}{-14}
Multiply 2 times -7.
x=\frac{\sqrt{281}+13}{-14}
Now solve the equation x=\frac{13±\sqrt{281}}{-14} when ± is plus. Add 13 to \sqrt{281}.
x=\frac{-\sqrt{281}-13}{14}
Divide 13+\sqrt{281} by -14.
x=\frac{13-\sqrt{281}}{-14}
Now solve the equation x=\frac{13±\sqrt{281}}{-14} when ± is minus. Subtract \sqrt{281} from 13.
x=\frac{\sqrt{281}-13}{14}
Divide 13-\sqrt{281} by -14.
x=\frac{-\sqrt{281}-13}{14} x=\frac{\sqrt{281}-13}{14}
The equation is now solved.
-7x^{2}-13x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-7x^{2}-13x+4-4=-4
Subtract 4 from both sides of the equation.
-7x^{2}-13x=-4
Subtracting 4 from itself leaves 0.
\frac{-7x^{2}-13x}{-7}=-\frac{4}{-7}
Divide both sides by -7.
x^{2}+\left(-\frac{13}{-7}\right)x=-\frac{4}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}+\frac{13}{7}x=-\frac{4}{-7}
Divide -13 by -7.
x^{2}+\frac{13}{7}x=\frac{4}{7}
Divide -4 by -7.
x^{2}+\frac{13}{7}x+\left(\frac{13}{14}\right)^{2}=\frac{4}{7}+\left(\frac{13}{14}\right)^{2}
Divide \frac{13}{7}, the coefficient of the x term, by 2 to get \frac{13}{14}. Then add the square of \frac{13}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{7}x+\frac{169}{196}=\frac{4}{7}+\frac{169}{196}
Square \frac{13}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{7}x+\frac{169}{196}=\frac{281}{196}
Add \frac{4}{7} to \frac{169}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{14}\right)^{2}=\frac{281}{196}
Factor x^{2}+\frac{13}{7}x+\frac{169}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{14}\right)^{2}}=\sqrt{\frac{281}{196}}
Take the square root of both sides of the equation.
x+\frac{13}{14}=\frac{\sqrt{281}}{14} x+\frac{13}{14}=-\frac{\sqrt{281}}{14}
Simplify.
x=\frac{\sqrt{281}-13}{14} x=\frac{-\sqrt{281}-13}{14}
Subtract \frac{13}{14} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}