Solve for m
m = \frac{5 \sqrt{26}}{13} \approx 1.961161351
m = -\frac{5 \sqrt{26}}{13} \approx -1.961161351
Share
Copied to clipboard
-13m^{2}=-46-4
Subtract 4 from both sides.
-13m^{2}=-50
Subtract 4 from -46 to get -50.
m^{2}=\frac{-50}{-13}
Divide both sides by -13.
m^{2}=\frac{50}{13}
Fraction \frac{-50}{-13} can be simplified to \frac{50}{13} by removing the negative sign from both the numerator and the denominator.
m=\frac{5\sqrt{26}}{13} m=-\frac{5\sqrt{26}}{13}
Take the square root of both sides of the equation.
4-13m^{2}+46=0
Add 46 to both sides.
50-13m^{2}=0
Add 4 and 46 to get 50.
-13m^{2}+50=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-13\right)\times 50}}{2\left(-13\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13 for a, 0 for b, and 50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-13\right)\times 50}}{2\left(-13\right)}
Square 0.
m=\frac{0±\sqrt{52\times 50}}{2\left(-13\right)}
Multiply -4 times -13.
m=\frac{0±\sqrt{2600}}{2\left(-13\right)}
Multiply 52 times 50.
m=\frac{0±10\sqrt{26}}{2\left(-13\right)}
Take the square root of 2600.
m=\frac{0±10\sqrt{26}}{-26}
Multiply 2 times -13.
m=-\frac{5\sqrt{26}}{13}
Now solve the equation m=\frac{0±10\sqrt{26}}{-26} when ± is plus.
m=\frac{5\sqrt{26}}{13}
Now solve the equation m=\frac{0±10\sqrt{26}}{-26} when ± is minus.
m=-\frac{5\sqrt{26}}{13} m=\frac{5\sqrt{26}}{13}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}