Solve for x
x=-3
Graph
Share
Copied to clipboard
0=\frac{4}{5}\left(x-\left(-3\right)\right)
Subtract 4 from 4 to get 0.
0=\frac{4}{5}\left(x+3\right)
The opposite of -3 is 3.
0=\frac{4}{5}x+\frac{4}{5}\times 3
Use the distributive property to multiply \frac{4}{5} by x+3.
0=\frac{4}{5}x+\frac{4\times 3}{5}
Express \frac{4}{5}\times 3 as a single fraction.
0=\frac{4}{5}x+\frac{12}{5}
Multiply 4 and 3 to get 12.
\frac{4}{5}x+\frac{12}{5}=0
Swap sides so that all variable terms are on the left hand side.
\frac{4}{5}x=-\frac{12}{5}
Subtract \frac{12}{5} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{12}{5}\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
x=\frac{-12\times 5}{5\times 4}
Multiply -\frac{12}{5} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-12}{4}
Cancel out 5 in both numerator and denominator.
x=-3
Divide -12 by 4 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}