Solve for x
x=-7
Graph
Share
Copied to clipboard
\left(x+4\right)\times 4-2\left(x+1\right)\left(x+4\right)=16\left(x+4\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
4x+16-2\left(x+1\right)\left(x+4\right)=16\left(x+4\right)
Use the distributive property to multiply x+4 by 4.
4x+16-2\left(x+1\right)\left(x+4\right)=16x+64
Use the distributive property to multiply 16 by x+4.
4x+16-2\left(x+1\right)\left(x+4\right)-16x=64
Subtract 16x from both sides.
4x+16-2\left(x+1\right)\left(x+4\right)-16x-64=0
Subtract 64 from both sides.
4x+16+\left(-2x-2\right)\left(x+4\right)-16x-64=0
Use the distributive property to multiply -2 by x+1.
4x+16-2x^{2}-10x-8-16x-64=0
Use the distributive property to multiply -2x-2 by x+4 and combine like terms.
-6x+16-2x^{2}-8-16x-64=0
Combine 4x and -10x to get -6x.
-6x+8-2x^{2}-16x-64=0
Subtract 8 from 16 to get 8.
-22x+8-2x^{2}-64=0
Combine -6x and -16x to get -22x.
-22x-56-2x^{2}=0
Subtract 64 from 8 to get -56.
-2x^{2}-22x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-2\right)\left(-56\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -22 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-2\right)\left(-56\right)}}{2\left(-2\right)}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484+8\left(-56\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-22\right)±\sqrt{484-448}}{2\left(-2\right)}
Multiply 8 times -56.
x=\frac{-\left(-22\right)±\sqrt{36}}{2\left(-2\right)}
Add 484 to -448.
x=\frac{-\left(-22\right)±6}{2\left(-2\right)}
Take the square root of 36.
x=\frac{22±6}{2\left(-2\right)}
The opposite of -22 is 22.
x=\frac{22±6}{-4}
Multiply 2 times -2.
x=\frac{28}{-4}
Now solve the equation x=\frac{22±6}{-4} when ± is plus. Add 22 to 6.
x=-7
Divide 28 by -4.
x=\frac{16}{-4}
Now solve the equation x=\frac{22±6}{-4} when ± is minus. Subtract 6 from 22.
x=-4
Divide 16 by -4.
x=-7 x=-4
The equation is now solved.
x=-7
Variable x cannot be equal to -4.
\left(x+4\right)\times 4-2\left(x+1\right)\left(x+4\right)=16\left(x+4\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
4x+16-2\left(x+1\right)\left(x+4\right)=16\left(x+4\right)
Use the distributive property to multiply x+4 by 4.
4x+16-2\left(x+1\right)\left(x+4\right)=16x+64
Use the distributive property to multiply 16 by x+4.
4x+16-2\left(x+1\right)\left(x+4\right)-16x=64
Subtract 16x from both sides.
4x+16+\left(-2x-2\right)\left(x+4\right)-16x=64
Use the distributive property to multiply -2 by x+1.
4x+16-2x^{2}-10x-8-16x=64
Use the distributive property to multiply -2x-2 by x+4 and combine like terms.
-6x+16-2x^{2}-8-16x=64
Combine 4x and -10x to get -6x.
-6x+8-2x^{2}-16x=64
Subtract 8 from 16 to get 8.
-22x+8-2x^{2}=64
Combine -6x and -16x to get -22x.
-22x-2x^{2}=64-8
Subtract 8 from both sides.
-22x-2x^{2}=56
Subtract 8 from 64 to get 56.
-2x^{2}-22x=56
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-22x}{-2}=\frac{56}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{22}{-2}\right)x=\frac{56}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+11x=\frac{56}{-2}
Divide -22 by -2.
x^{2}+11x=-28
Divide 56 by -2.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-28+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-28+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{9}{4}
Add -28 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{3}{2} x+\frac{11}{2}=-\frac{3}{2}
Simplify.
x=-4 x=-7
Subtract \frac{11}{2} from both sides of the equation.
x=-7
Variable x cannot be equal to -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}