Solve for x
x = \frac{26}{3} = 8\frac{2}{3} \approx 8.666666667
Graph
Share
Copied to clipboard
4+4=\frac{3}{4}\left(x-\left(-2\right)\right)
The opposite of -4 is 4.
8=\frac{3}{4}\left(x-\left(-2\right)\right)
Add 4 and 4 to get 8.
8=\frac{3}{4}\left(x+2\right)
The opposite of -2 is 2.
8=\frac{3}{4}x+\frac{3}{4}\times 2
Use the distributive property to multiply \frac{3}{4} by x+2.
8=\frac{3}{4}x+\frac{3\times 2}{4}
Express \frac{3}{4}\times 2 as a single fraction.
8=\frac{3}{4}x+\frac{6}{4}
Multiply 3 and 2 to get 6.
8=\frac{3}{4}x+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{3}{4}x+\frac{3}{2}=8
Swap sides so that all variable terms are on the left hand side.
\frac{3}{4}x=8-\frac{3}{2}
Subtract \frac{3}{2} from both sides.
\frac{3}{4}x=\frac{16}{2}-\frac{3}{2}
Convert 8 to fraction \frac{16}{2}.
\frac{3}{4}x=\frac{16-3}{2}
Since \frac{16}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}x=\frac{13}{2}
Subtract 3 from 16 to get 13.
x=\frac{13}{2}\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
x=\frac{13\times 4}{2\times 3}
Multiply \frac{13}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{52}{6}
Do the multiplications in the fraction \frac{13\times 4}{2\times 3}.
x=\frac{26}{3}
Reduce the fraction \frac{52}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}