Solve for x
x = \frac{33}{5} = 6\frac{3}{5} = 6.6
Graph
Share
Copied to clipboard
24-\left(x-3\right)=12-2\left(9-2x\right)
Multiply both sides of the equation by 6, the least common multiple of 6,3.
24-x-\left(-3\right)=12-2\left(9-2x\right)
To find the opposite of x-3, find the opposite of each term.
24-x+3=12-2\left(9-2x\right)
The opposite of -3 is 3.
27-x=12-2\left(9-2x\right)
Add 24 and 3 to get 27.
27-x=12-18+4x
Use the distributive property to multiply -2 by 9-2x.
27-x=-6+4x
Subtract 18 from 12 to get -6.
27-x-4x=-6
Subtract 4x from both sides.
27-5x=-6
Combine -x and -4x to get -5x.
-5x=-6-27
Subtract 27 from both sides.
-5x=-33
Subtract 27 from -6 to get -33.
x=\frac{-33}{-5}
Divide both sides by -5.
x=\frac{33}{5}
Fraction \frac{-33}{-5} can be simplified to \frac{33}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}