Solve for x
x=-\frac{5y}{4}-\frac{3}{2}
Solve for y
y=\frac{-4x-6}{5}
Graph
Share
Copied to clipboard
12-\left(5y+4x\right)=18
Multiply both sides of the equation by 3.
12-5y-4x=18
To find the opposite of 5y+4x, find the opposite of each term.
-5y-4x=18-12
Subtract 12 from both sides.
-5y-4x=6
Subtract 12 from 18 to get 6.
-4x=6+5y
Add 5y to both sides.
-4x=5y+6
The equation is in standard form.
\frac{-4x}{-4}=\frac{5y+6}{-4}
Divide both sides by -4.
x=\frac{5y+6}{-4}
Dividing by -4 undoes the multiplication by -4.
x=-\frac{5y}{4}-\frac{3}{2}
Divide 6+5y by -4.
12-\left(5y+4x\right)=18
Multiply both sides of the equation by 3.
12-5y-4x=18
To find the opposite of 5y+4x, find the opposite of each term.
-5y-4x=18-12
Subtract 12 from both sides.
-5y-4x=6
Subtract 12 from 18 to get 6.
-5y=6+4x
Add 4x to both sides.
-5y=4x+6
The equation is in standard form.
\frac{-5y}{-5}=\frac{4x+6}{-5}
Divide both sides by -5.
y=\frac{4x+6}{-5}
Dividing by -5 undoes the multiplication by -5.
y=\frac{-4x-6}{5}
Divide 6+4x by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}