Solve for m
m = \frac{3 \sqrt{2129} + 69}{32} \approx 6.481976998
m=\frac{69-3\sqrt{2129}}{32}\approx -2.169476998
Share
Copied to clipboard
4-\frac{3}{4}m+\frac{9}{4}=\frac{4}{9}\left(m-3\right)^{2}-4
Use the distributive property to multiply -\frac{3}{4} by m-3.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}\left(m-3\right)^{2}-4
Add 4 and \frac{9}{4} to get \frac{25}{4}.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}\left(m^{2}-6m+9\right)-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-3\right)^{2}.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}m^{2}-\frac{8}{3}m+4-4
Use the distributive property to multiply \frac{4}{9} by m^{2}-6m+9.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}m^{2}-\frac{8}{3}m
Subtract 4 from 4 to get 0.
\frac{25}{4}-\frac{3}{4}m-\frac{4}{9}m^{2}=-\frac{8}{3}m
Subtract \frac{4}{9}m^{2} from both sides.
\frac{25}{4}-\frac{3}{4}m-\frac{4}{9}m^{2}+\frac{8}{3}m=0
Add \frac{8}{3}m to both sides.
\frac{25}{4}+\frac{23}{12}m-\frac{4}{9}m^{2}=0
Combine -\frac{3}{4}m and \frac{8}{3}m to get \frac{23}{12}m.
-\frac{4}{9}m^{2}+\frac{23}{12}m+\frac{25}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\frac{23}{12}±\sqrt{\left(\frac{23}{12}\right)^{2}-4\left(-\frac{4}{9}\right)\times \frac{25}{4}}}{2\left(-\frac{4}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{4}{9} for a, \frac{23}{12} for b, and \frac{25}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\frac{23}{12}±\sqrt{\frac{529}{144}-4\left(-\frac{4}{9}\right)\times \frac{25}{4}}}{2\left(-\frac{4}{9}\right)}
Square \frac{23}{12} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\frac{23}{12}±\sqrt{\frac{529}{144}+\frac{16}{9}\times \frac{25}{4}}}{2\left(-\frac{4}{9}\right)}
Multiply -4 times -\frac{4}{9}.
m=\frac{-\frac{23}{12}±\sqrt{\frac{529}{144}+\frac{100}{9}}}{2\left(-\frac{4}{9}\right)}
Multiply \frac{16}{9} times \frac{25}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
m=\frac{-\frac{23}{12}±\sqrt{\frac{2129}{144}}}{2\left(-\frac{4}{9}\right)}
Add \frac{529}{144} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{-\frac{23}{12}±\frac{\sqrt{2129}}{12}}{2\left(-\frac{4}{9}\right)}
Take the square root of \frac{2129}{144}.
m=\frac{-\frac{23}{12}±\frac{\sqrt{2129}}{12}}{-\frac{8}{9}}
Multiply 2 times -\frac{4}{9}.
m=\frac{\sqrt{2129}-23}{-\frac{8}{9}\times 12}
Now solve the equation m=\frac{-\frac{23}{12}±\frac{\sqrt{2129}}{12}}{-\frac{8}{9}} when ± is plus. Add -\frac{23}{12} to \frac{\sqrt{2129}}{12}.
m=\frac{69-3\sqrt{2129}}{32}
Divide \frac{-23+\sqrt{2129}}{12} by -\frac{8}{9} by multiplying \frac{-23+\sqrt{2129}}{12} by the reciprocal of -\frac{8}{9}.
m=\frac{-\sqrt{2129}-23}{-\frac{8}{9}\times 12}
Now solve the equation m=\frac{-\frac{23}{12}±\frac{\sqrt{2129}}{12}}{-\frac{8}{9}} when ± is minus. Subtract \frac{\sqrt{2129}}{12} from -\frac{23}{12}.
m=\frac{3\sqrt{2129}+69}{32}
Divide \frac{-23-\sqrt{2129}}{12} by -\frac{8}{9} by multiplying \frac{-23-\sqrt{2129}}{12} by the reciprocal of -\frac{8}{9}.
m=\frac{69-3\sqrt{2129}}{32} m=\frac{3\sqrt{2129}+69}{32}
The equation is now solved.
4-\frac{3}{4}m+\frac{9}{4}=\frac{4}{9}\left(m-3\right)^{2}-4
Use the distributive property to multiply -\frac{3}{4} by m-3.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}\left(m-3\right)^{2}-4
Add 4 and \frac{9}{4} to get \frac{25}{4}.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}\left(m^{2}-6m+9\right)-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-3\right)^{2}.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}m^{2}-\frac{8}{3}m+4-4
Use the distributive property to multiply \frac{4}{9} by m^{2}-6m+9.
\frac{25}{4}-\frac{3}{4}m=\frac{4}{9}m^{2}-\frac{8}{3}m
Subtract 4 from 4 to get 0.
\frac{25}{4}-\frac{3}{4}m-\frac{4}{9}m^{2}=-\frac{8}{3}m
Subtract \frac{4}{9}m^{2} from both sides.
\frac{25}{4}-\frac{3}{4}m-\frac{4}{9}m^{2}+\frac{8}{3}m=0
Add \frac{8}{3}m to both sides.
\frac{25}{4}+\frac{23}{12}m-\frac{4}{9}m^{2}=0
Combine -\frac{3}{4}m and \frac{8}{3}m to get \frac{23}{12}m.
\frac{23}{12}m-\frac{4}{9}m^{2}=-\frac{25}{4}
Subtract \frac{25}{4} from both sides. Anything subtracted from zero gives its negation.
-\frac{4}{9}m^{2}+\frac{23}{12}m=-\frac{25}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{4}{9}m^{2}+\frac{23}{12}m}{-\frac{4}{9}}=-\frac{\frac{25}{4}}{-\frac{4}{9}}
Divide both sides of the equation by -\frac{4}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
m^{2}+\frac{\frac{23}{12}}{-\frac{4}{9}}m=-\frac{\frac{25}{4}}{-\frac{4}{9}}
Dividing by -\frac{4}{9} undoes the multiplication by -\frac{4}{9}.
m^{2}-\frac{69}{16}m=-\frac{\frac{25}{4}}{-\frac{4}{9}}
Divide \frac{23}{12} by -\frac{4}{9} by multiplying \frac{23}{12} by the reciprocal of -\frac{4}{9}.
m^{2}-\frac{69}{16}m=\frac{225}{16}
Divide -\frac{25}{4} by -\frac{4}{9} by multiplying -\frac{25}{4} by the reciprocal of -\frac{4}{9}.
m^{2}-\frac{69}{16}m+\left(-\frac{69}{32}\right)^{2}=\frac{225}{16}+\left(-\frac{69}{32}\right)^{2}
Divide -\frac{69}{16}, the coefficient of the x term, by 2 to get -\frac{69}{32}. Then add the square of -\frac{69}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{69}{16}m+\frac{4761}{1024}=\frac{225}{16}+\frac{4761}{1024}
Square -\frac{69}{32} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{69}{16}m+\frac{4761}{1024}=\frac{19161}{1024}
Add \frac{225}{16} to \frac{4761}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{69}{32}\right)^{2}=\frac{19161}{1024}
Factor m^{2}-\frac{69}{16}m+\frac{4761}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{69}{32}\right)^{2}}=\sqrt{\frac{19161}{1024}}
Take the square root of both sides of the equation.
m-\frac{69}{32}=\frac{3\sqrt{2129}}{32} m-\frac{69}{32}=-\frac{3\sqrt{2129}}{32}
Simplify.
m=\frac{3\sqrt{2129}+69}{32} m=\frac{69-3\sqrt{2129}}{32}
Add \frac{69}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}