Evaluate
\frac{71}{20}=3.55
Factor
\frac{71}{2 ^ {2} \cdot 5} = 3\frac{11}{20} = 3.55
Quiz
Arithmetic
4 - \frac { 1 } { 3 } + ( \frac { 1 } { 4 } - \frac { 1 } { 5 } - \frac { 1 } { 6 } ) =
Share
Copied to clipboard
\frac{12}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}
Convert 4 to fraction \frac{12}{3}.
\frac{12-1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}
Since \frac{12}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}
Subtract 1 from 12 to get 11.
\frac{44}{12}+\frac{3}{12}-\frac{1}{5}-\frac{1}{6}
Least common multiple of 3 and 4 is 12. Convert \frac{11}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{44+3}{12}-\frac{1}{5}-\frac{1}{6}
Since \frac{44}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{47}{12}-\frac{1}{5}-\frac{1}{6}
Add 44 and 3 to get 47.
\frac{235}{60}-\frac{12}{60}-\frac{1}{6}
Least common multiple of 12 and 5 is 60. Convert \frac{47}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{235-12}{60}-\frac{1}{6}
Since \frac{235}{60} and \frac{12}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{223}{60}-\frac{1}{6}
Subtract 12 from 235 to get 223.
\frac{223}{60}-\frac{10}{60}
Least common multiple of 60 and 6 is 60. Convert \frac{223}{60} and \frac{1}{6} to fractions with denominator 60.
\frac{223-10}{60}
Since \frac{223}{60} and \frac{10}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{213}{60}
Subtract 10 from 223 to get 213.
\frac{71}{20}
Reduce the fraction \frac{213}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}