Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
4-\frac{\frac{7}{12}-\left(-\frac{8}{10}+\frac{15}{10}-2\right)\left(\frac{7}{13}+\frac{5}{26}-1\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Least common multiple of 5 and 2 is 10. Convert -\frac{4}{5} and \frac{3}{2} to fractions with denominator 10.
4-\frac{\frac{7}{12}-\left(\frac{-8+15}{10}-2\right)\left(\frac{7}{13}+\frac{5}{26}-1\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Since -\frac{8}{10} and \frac{15}{10} have the same denominator, add them by adding their numerators.
4-\frac{\frac{7}{12}-\left(\frac{7}{10}-2\right)\left(\frac{7}{13}+\frac{5}{26}-1\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Add -8 and 15 to get 7.
4-\frac{\frac{7}{12}-\left(\frac{7}{10}-\frac{20}{10}\right)\left(\frac{7}{13}+\frac{5}{26}-1\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Convert 2 to fraction \frac{20}{10}.
4-\frac{\frac{7}{12}-\frac{7-20}{10}\left(\frac{7}{13}+\frac{5}{26}-1\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Since \frac{7}{10} and \frac{20}{10} have the same denominator, subtract them by subtracting their numerators.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\left(\frac{7}{13}+\frac{5}{26}-1\right)\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Subtract 20 from 7 to get -13.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\left(\frac{14}{26}+\frac{5}{26}-1\right)\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Least common multiple of 13 and 26 is 26. Convert \frac{7}{13} and \frac{5}{26} to fractions with denominator 26.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\left(\frac{14+5}{26}-1\right)\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Since \frac{14}{26} and \frac{5}{26} have the same denominator, add them by adding their numerators.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\left(\frac{19}{26}-1\right)\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Add 14 and 5 to get 19.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\left(\frac{19}{26}-\frac{26}{26}\right)\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Convert 1 to fraction \frac{26}{26}.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\times \frac{19-26}{26}\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Since \frac{19}{26} and \frac{26}{26} have the same denominator, subtract them by subtracting their numerators.
4-\frac{\frac{7}{12}-\left(-\frac{13}{10}\left(-\frac{7}{26}\right)\right)}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Subtract 26 from 19 to get -7.
4-\frac{\frac{7}{12}-\frac{-13\left(-7\right)}{10\times 26}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Multiply -\frac{13}{10} times -\frac{7}{26} by multiplying numerator times numerator and denominator times denominator.
4-\frac{\frac{7}{12}-\frac{91}{260}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Do the multiplications in the fraction \frac{-13\left(-7\right)}{10\times 26}.
4-\frac{\frac{7}{12}-\frac{7}{20}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Reduce the fraction \frac{91}{260} to lowest terms by extracting and canceling out 13.
4-\frac{\frac{35}{60}-\frac{21}{60}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Least common multiple of 12 and 20 is 60. Convert \frac{7}{12} and \frac{7}{20} to fractions with denominator 60.
4-\frac{\frac{35-21}{60}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Since \frac{35}{60} and \frac{21}{60} have the same denominator, subtract them by subtracting their numerators.
4-\frac{\frac{14}{60}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Subtract 21 from 35 to get 14.
4-\frac{\frac{7}{30}}{\frac{11}{12}-\frac{8}{5}+\frac{17}{30}}
Reduce the fraction \frac{14}{60} to lowest terms by extracting and canceling out 2.
4-\frac{\frac{7}{30}}{\frac{55}{60}-\frac{96}{60}+\frac{17}{30}}
Least common multiple of 12 and 5 is 60. Convert \frac{11}{12} and \frac{8}{5} to fractions with denominator 60.
4-\frac{\frac{7}{30}}{\frac{55-96}{60}+\frac{17}{30}}
Since \frac{55}{60} and \frac{96}{60} have the same denominator, subtract them by subtracting their numerators.
4-\frac{\frac{7}{30}}{-\frac{41}{60}+\frac{17}{30}}
Subtract 96 from 55 to get -41.
4-\frac{\frac{7}{30}}{-\frac{41}{60}+\frac{34}{60}}
Least common multiple of 60 and 30 is 60. Convert -\frac{41}{60} and \frac{17}{30} to fractions with denominator 60.
4-\frac{\frac{7}{30}}{\frac{-41+34}{60}}
Since -\frac{41}{60} and \frac{34}{60} have the same denominator, add them by adding their numerators.
4-\frac{\frac{7}{30}}{-\frac{7}{60}}
Add -41 and 34 to get -7.
4-\frac{7}{30}\left(-\frac{60}{7}\right)
Divide \frac{7}{30} by -\frac{7}{60} by multiplying \frac{7}{30} by the reciprocal of -\frac{7}{60}.
4-\frac{7\left(-60\right)}{30\times 7}
Multiply \frac{7}{30} times -\frac{60}{7} by multiplying numerator times numerator and denominator times denominator.
4-\frac{-60}{30}
Cancel out 7 in both numerator and denominator.
4-\left(-2\right)
Divide -60 by 30 to get -2.
4+2
The opposite of -2 is 2.
6
Add 4 and 2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}