Solve for x
x = -\frac{32}{3} = -10\frac{2}{3} \approx -10.666666667
Graph
Share
Copied to clipboard
4x-24=7x+8
Use the distributive property to multiply 4 by x-6.
4x-24-7x=8
Subtract 7x from both sides.
-3x-24=8
Combine 4x and -7x to get -3x.
-3x=8+24
Add 24 to both sides.
-3x=32
Add 8 and 24 to get 32.
x=\frac{32}{-3}
Divide both sides by -3.
x=-\frac{32}{3}
Fraction \frac{32}{-3} can be rewritten as -\frac{32}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}