Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(x^{2}-10x+25\right)-21=-5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}-40x+100-21=-5
Use the distributive property to multiply 4 by x^{2}-10x+25.
4x^{2}-40x+79=-5
Subtract 21 from 100 to get 79.
4x^{2}-40x+79+5=0
Add 5 to both sides.
4x^{2}-40x+84=0
Add 79 and 5 to get 84.
x^{2}-10x+21=0
Divide both sides by 4.
a+b=-10 ab=1\times 21=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-7 b=-3
The solution is the pair that gives sum -10.
\left(x^{2}-7x\right)+\left(-3x+21\right)
Rewrite x^{2}-10x+21 as \left(x^{2}-7x\right)+\left(-3x+21\right).
x\left(x-7\right)-3\left(x-7\right)
Factor out x in the first and -3 in the second group.
\left(x-7\right)\left(x-3\right)
Factor out common term x-7 by using distributive property.
x=7 x=3
To find equation solutions, solve x-7=0 and x-3=0.
4\left(x^{2}-10x+25\right)-21=-5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}-40x+100-21=-5
Use the distributive property to multiply 4 by x^{2}-10x+25.
4x^{2}-40x+79=-5
Subtract 21 from 100 to get 79.
4x^{2}-40x+79+5=0
Add 5 to both sides.
4x^{2}-40x+84=0
Add 79 and 5 to get 84.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 4\times 84}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -40 for b, and 84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 4\times 84}}{2\times 4}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-16\times 84}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-40\right)±\sqrt{1600-1344}}{2\times 4}
Multiply -16 times 84.
x=\frac{-\left(-40\right)±\sqrt{256}}{2\times 4}
Add 1600 to -1344.
x=\frac{-\left(-40\right)±16}{2\times 4}
Take the square root of 256.
x=\frac{40±16}{2\times 4}
The opposite of -40 is 40.
x=\frac{40±16}{8}
Multiply 2 times 4.
x=\frac{56}{8}
Now solve the equation x=\frac{40±16}{8} when ± is plus. Add 40 to 16.
x=7
Divide 56 by 8.
x=\frac{24}{8}
Now solve the equation x=\frac{40±16}{8} when ± is minus. Subtract 16 from 40.
x=3
Divide 24 by 8.
x=7 x=3
The equation is now solved.
4\left(x^{2}-10x+25\right)-21=-5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}-40x+100-21=-5
Use the distributive property to multiply 4 by x^{2}-10x+25.
4x^{2}-40x+79=-5
Subtract 21 from 100 to get 79.
4x^{2}-40x=-5-79
Subtract 79 from both sides.
4x^{2}-40x=-84
Subtract 79 from -5 to get -84.
\frac{4x^{2}-40x}{4}=-\frac{84}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{40}{4}\right)x=-\frac{84}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-10x=-\frac{84}{4}
Divide -40 by 4.
x^{2}-10x=-21
Divide -84 by 4.
x^{2}-10x+\left(-5\right)^{2}=-21+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-21+25
Square -5.
x^{2}-10x+25=4
Add -21 to 25.
\left(x-5\right)^{2}=4
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-5=2 x-5=-2
Simplify.
x=7 x=3
Add 5 to both sides of the equation.