Solve for x
x = \frac{13}{2} = 6\frac{1}{2} = 6.5
Graph
Share
Copied to clipboard
4\left(x^{2}-6x+9\right)-28\left(x-3\right)=-49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{2}-24x+36-28\left(x-3\right)=-49
Use the distributive property to multiply 4 by x^{2}-6x+9.
4x^{2}-24x+36-28x+84=-49
Use the distributive property to multiply -28 by x-3.
4x^{2}-52x+36+84=-49
Combine -24x and -28x to get -52x.
4x^{2}-52x+120=-49
Add 36 and 84 to get 120.
4x^{2}-52x+120+49=0
Add 49 to both sides.
4x^{2}-52x+169=0
Add 120 and 49 to get 169.
a+b=-52 ab=4\times 169=676
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+169. To find a and b, set up a system to be solved.
-1,-676 -2,-338 -4,-169 -13,-52 -26,-26
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 676.
-1-676=-677 -2-338=-340 -4-169=-173 -13-52=-65 -26-26=-52
Calculate the sum for each pair.
a=-26 b=-26
The solution is the pair that gives sum -52.
\left(4x^{2}-26x\right)+\left(-26x+169\right)
Rewrite 4x^{2}-52x+169 as \left(4x^{2}-26x\right)+\left(-26x+169\right).
2x\left(2x-13\right)-13\left(2x-13\right)
Factor out 2x in the first and -13 in the second group.
\left(2x-13\right)\left(2x-13\right)
Factor out common term 2x-13 by using distributive property.
\left(2x-13\right)^{2}
Rewrite as a binomial square.
x=\frac{13}{2}
To find equation solution, solve 2x-13=0.
4\left(x^{2}-6x+9\right)-28\left(x-3\right)=-49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{2}-24x+36-28\left(x-3\right)=-49
Use the distributive property to multiply 4 by x^{2}-6x+9.
4x^{2}-24x+36-28x+84=-49
Use the distributive property to multiply -28 by x-3.
4x^{2}-52x+36+84=-49
Combine -24x and -28x to get -52x.
4x^{2}-52x+120=-49
Add 36 and 84 to get 120.
4x^{2}-52x+120+49=0
Add 49 to both sides.
4x^{2}-52x+169=0
Add 120 and 49 to get 169.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 4\times 169}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -52 for b, and 169 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 4\times 169}}{2\times 4}
Square -52.
x=\frac{-\left(-52\right)±\sqrt{2704-16\times 169}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-52\right)±\sqrt{2704-2704}}{2\times 4}
Multiply -16 times 169.
x=\frac{-\left(-52\right)±\sqrt{0}}{2\times 4}
Add 2704 to -2704.
x=-\frac{-52}{2\times 4}
Take the square root of 0.
x=\frac{52}{2\times 4}
The opposite of -52 is 52.
x=\frac{52}{8}
Multiply 2 times 4.
x=\frac{13}{2}
Reduce the fraction \frac{52}{8} to lowest terms by extracting and canceling out 4.
4\left(x^{2}-6x+9\right)-28\left(x-3\right)=-49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{2}-24x+36-28\left(x-3\right)=-49
Use the distributive property to multiply 4 by x^{2}-6x+9.
4x^{2}-24x+36-28x+84=-49
Use the distributive property to multiply -28 by x-3.
4x^{2}-52x+36+84=-49
Combine -24x and -28x to get -52x.
4x^{2}-52x+120=-49
Add 36 and 84 to get 120.
4x^{2}-52x=-49-120
Subtract 120 from both sides.
4x^{2}-52x=-169
Subtract 120 from -49 to get -169.
\frac{4x^{2}-52x}{4}=-\frac{169}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{52}{4}\right)x=-\frac{169}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-13x=-\frac{169}{4}
Divide -52 by 4.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-\frac{169}{4}+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=\frac{-169+169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=0
Add -\frac{169}{4} to \frac{169}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{2}\right)^{2}=0
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{13}{2}=0 x-\frac{13}{2}=0
Simplify.
x=\frac{13}{2} x=\frac{13}{2}
Add \frac{13}{2} to both sides of the equation.
x=\frac{13}{2}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}