Solve for x
x\leq \frac{9}{4}
Graph
Share
Copied to clipboard
4\left(x^{2}-6x+9\right)-\left(2x-5\right)^{2}\geq 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
4x^{2}-24x+36-\left(2x-5\right)^{2}\geq 2
Use the distributive property to multiply 4 by x^{2}-6x+9.
4x^{2}-24x+36-\left(4x^{2}-20x+25\right)\geq 2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-24x+36-4x^{2}+20x-25\geq 2
To find the opposite of 4x^{2}-20x+25, find the opposite of each term.
-24x+36+20x-25\geq 2
Combine 4x^{2} and -4x^{2} to get 0.
-4x+36-25\geq 2
Combine -24x and 20x to get -4x.
-4x+11\geq 2
Subtract 25 from 36 to get 11.
-4x\geq 2-11
Subtract 11 from both sides.
-4x\geq -9
Subtract 11 from 2 to get -9.
x\leq \frac{-9}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x\leq \frac{9}{4}
Fraction \frac{-9}{-4} can be simplified to \frac{9}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}