Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-x+1=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}-x+1-3=3-3
Subtract 3 from both sides of the equation.
4x^{2}-x+1-3=0
Subtracting 3 from itself leaves 0.
4x^{2}-x-2=0
Subtract 3 from 1.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-2\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-2\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-1\right)±\sqrt{1+32}}{2\times 4}
Multiply -16 times -2.
x=\frac{-\left(-1\right)±\sqrt{33}}{2\times 4}
Add 1 to 32.
x=\frac{1±\sqrt{33}}{2\times 4}
The opposite of -1 is 1.
x=\frac{1±\sqrt{33}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{33}+1}{8}
Now solve the equation x=\frac{1±\sqrt{33}}{8} when ± is plus. Add 1 to \sqrt{33}.
x=\frac{1-\sqrt{33}}{8}
Now solve the equation x=\frac{1±\sqrt{33}}{8} when ± is minus. Subtract \sqrt{33} from 1.
x=\frac{\sqrt{33}+1}{8} x=\frac{1-\sqrt{33}}{8}
The equation is now solved.
4x^{2}-x+1=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-x+1-1=3-1
Subtract 1 from both sides of the equation.
4x^{2}-x=3-1
Subtracting 1 from itself leaves 0.
4x^{2}-x=2
Subtract 1 from 3.
\frac{4x^{2}-x}{4}=\frac{2}{4}
Divide both sides by 4.
x^{2}-\frac{1}{4}x=\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{1}{4}x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{1}{2}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{33}{64}
Add \frac{1}{2} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{33}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{33}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{33}}{8} x-\frac{1}{8}=-\frac{\sqrt{33}}{8}
Simplify.
x=\frac{\sqrt{33}+1}{8} x=\frac{1-\sqrt{33}}{8}
Add \frac{1}{8} to both sides of the equation.