Solve for k
k=\frac{2x}{123}
Solve for x
x=\frac{123k}{2}
Graph
Share
Copied to clipboard
4x=0.492\times 500k
Multiply 6 and 0.082 to get 0.492.
4x=246k
Multiply 0.492 and 500 to get 246.
246k=4x
Swap sides so that all variable terms are on the left hand side.
\frac{246k}{246}=\frac{4x}{246}
Divide both sides by 246.
k=\frac{4x}{246}
Dividing by 246 undoes the multiplication by 246.
k=\frac{2x}{123}
Divide 4x by 246.
4x=0.492\times 500k
Multiply 6 and 0.082 to get 0.492.
4x=246k
Multiply 0.492 and 500 to get 246.
\frac{4x}{4}=\frac{246k}{4}
Divide both sides by 4.
x=\frac{246k}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{123k}{2}
Divide 246k by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}