Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)-9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
4\left(x^{4}-2x^{2}+1\right)-9=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4x^{4}-8x^{2}+4-9=0
Use the distributive property to multiply 4 by x^{4}-2x^{2}+1.
4x^{4}-8x^{2}-5=0
Subtract 9 from 4 to get -5.
4t^{2}-8t-5=0
Substitute t for x^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -8 for b, and -5 for c in the quadratic formula.
t=\frac{8±12}{8}
Do the calculations.
t=\frac{5}{2} t=-\frac{1}{2}
Solve the equation t=\frac{8±12}{8} when ± is plus and when ± is minus.
x=-\frac{\sqrt{10}}{2} x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{2}i}{2} x=\frac{\sqrt{2}i}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
4\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)-9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
4\left(x^{4}-2x^{2}+1\right)-9=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4x^{4}-8x^{2}+4-9=0
Use the distributive property to multiply 4 by x^{4}-2x^{2}+1.
4x^{4}-8x^{2}-5=0
Subtract 9 from 4 to get -5.
4t^{2}-8t-5=0
Substitute t for x^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -8 for b, and -5 for c in the quadratic formula.
t=\frac{8±12}{8}
Do the calculations.
t=\frac{5}{2} t=-\frac{1}{2}
Solve the equation t=\frac{8±12}{8} when ± is plus and when ± is minus.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.