Solve for x
x=-1
x=\frac{1}{5}=0.2
Graph
Share
Copied to clipboard
4x^{2}+4x=1-x^{2}
Use the distributive property to multiply 4 by x^{2}+x.
4x^{2}+4x-1=-x^{2}
Subtract 1 from both sides.
4x^{2}+4x-1+x^{2}=0
Add x^{2} to both sides.
5x^{2}+4x-1=0
Combine 4x^{2} and x^{2} to get 5x^{2}.
a+b=4 ab=5\left(-1\right)=-5
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-1 b=5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(5x^{2}-x\right)+\left(5x-1\right)
Rewrite 5x^{2}+4x-1 as \left(5x^{2}-x\right)+\left(5x-1\right).
x\left(5x-1\right)+5x-1
Factor out x in 5x^{2}-x.
\left(5x-1\right)\left(x+1\right)
Factor out common term 5x-1 by using distributive property.
x=\frac{1}{5} x=-1
To find equation solutions, solve 5x-1=0 and x+1=0.
4x^{2}+4x=1-x^{2}
Use the distributive property to multiply 4 by x^{2}+x.
4x^{2}+4x-1=-x^{2}
Subtract 1 from both sides.
4x^{2}+4x-1+x^{2}=0
Add x^{2} to both sides.
5x^{2}+4x-1=0
Combine 4x^{2} and x^{2} to get 5x^{2}.
x=\frac{-4±\sqrt{4^{2}-4\times 5\left(-1\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 5\left(-1\right)}}{2\times 5}
Square 4.
x=\frac{-4±\sqrt{16-20\left(-1\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-4±\sqrt{16+20}}{2\times 5}
Multiply -20 times -1.
x=\frac{-4±\sqrt{36}}{2\times 5}
Add 16 to 20.
x=\frac{-4±6}{2\times 5}
Take the square root of 36.
x=\frac{-4±6}{10}
Multiply 2 times 5.
x=\frac{2}{10}
Now solve the equation x=\frac{-4±6}{10} when ± is plus. Add -4 to 6.
x=\frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
x=-\frac{10}{10}
Now solve the equation x=\frac{-4±6}{10} when ± is minus. Subtract 6 from -4.
x=-1
Divide -10 by 10.
x=\frac{1}{5} x=-1
The equation is now solved.
4x^{2}+4x=1-x^{2}
Use the distributive property to multiply 4 by x^{2}+x.
4x^{2}+4x+x^{2}=1
Add x^{2} to both sides.
5x^{2}+4x=1
Combine 4x^{2} and x^{2} to get 5x^{2}.
\frac{5x^{2}+4x}{5}=\frac{1}{5}
Divide both sides by 5.
x^{2}+\frac{4}{5}x=\frac{1}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\frac{1}{5}+\left(\frac{2}{5}\right)^{2}
Divide \frac{4}{5}, the coefficient of the x term, by 2 to get \frac{2}{5}. Then add the square of \frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{1}{5}+\frac{4}{25}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{9}{25}
Add \frac{1}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{5}\right)^{2}=\frac{9}{25}
Factor x^{2}+\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Take the square root of both sides of the equation.
x+\frac{2}{5}=\frac{3}{5} x+\frac{2}{5}=-\frac{3}{5}
Simplify.
x=\frac{1}{5} x=-1
Subtract \frac{2}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}