Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4x^{2}+4 by 2x^{2}+1 and combine like terms.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Use the distributive property to multiply 5 by x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Subtract 5x^{4} from both sides.
3x^{4}+12x^{2}+4=-10x^{2}+5
Combine 8x^{4} and -5x^{4} to get 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Add 10x^{2} to both sides.
3x^{4}+22x^{2}+4=5
Combine 12x^{2} and 10x^{2} to get 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Subtract 5 from both sides.
3x^{4}+22x^{2}-1=0
Subtract 5 from 4 to get -1.
3t^{2}+22t-1=0
Substitute t for x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 22 for b, and -1 for c in the quadratic formula.
t=\frac{-22±4\sqrt{31}}{6}
Do the calculations.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Solve the equation t=\frac{-22±4\sqrt{31}}{6} when ± is plus and when ± is minus.
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4x^{2}+4 by 2x^{2}+1 and combine like terms.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Use the distributive property to multiply 5 by x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Subtract 5x^{4} from both sides.
3x^{4}+12x^{2}+4=-10x^{2}+5
Combine 8x^{4} and -5x^{4} to get 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Add 10x^{2} to both sides.
3x^{4}+22x^{2}+4=5
Combine 12x^{2} and 10x^{2} to get 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Subtract 5 from both sides.
3x^{4}+22x^{2}-1=0
Subtract 5 from 4 to get -1.
3t^{2}+22t-1=0
Substitute t for x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 22 for b, and -1 for c in the quadratic formula.
t=\frac{-22±4\sqrt{31}}{6}
Do the calculations.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Solve the equation t=\frac{-22±4\sqrt{31}}{6} when ± is plus and when ± is minus.
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.