Solve for x (complex solution)
x=\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx 2.716341211i
x=-\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx -0-2.716341211i
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0.212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0.212547035
Solve for x
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0.212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0.212547035
Graph
Share
Copied to clipboard
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4x^{2}+4 by 2x^{2}+1 and combine like terms.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Use the distributive property to multiply 5 by x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Subtract 5x^{4} from both sides.
3x^{4}+12x^{2}+4=-10x^{2}+5
Combine 8x^{4} and -5x^{4} to get 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Add 10x^{2} to both sides.
3x^{4}+22x^{2}+4=5
Combine 12x^{2} and 10x^{2} to get 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Subtract 5 from both sides.
3x^{4}+22x^{2}-1=0
Subtract 5 from 4 to get -1.
3t^{2}+22t-1=0
Substitute t for x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 22 for b, and -1 for c in the quadratic formula.
t=\frac{-22±4\sqrt{31}}{6}
Do the calculations.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Solve the equation t=\frac{-22±4\sqrt{31}}{6} when ± is plus and when ± is minus.
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+1.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
Use the distributive property to multiply 4x^{2}+4 by 2x^{2}+1 and combine like terms.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
Use the distributive property to multiply 5 by x^{4}-2x^{2}+1.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Subtract 5x^{4} from both sides.
3x^{4}+12x^{2}+4=-10x^{2}+5
Combine 8x^{4} and -5x^{4} to get 3x^{4}.
3x^{4}+12x^{2}+4+10x^{2}=5
Add 10x^{2} to both sides.
3x^{4}+22x^{2}+4=5
Combine 12x^{2} and 10x^{2} to get 22x^{2}.
3x^{4}+22x^{2}+4-5=0
Subtract 5 from both sides.
3x^{4}+22x^{2}-1=0
Subtract 5 from 4 to get -1.
3t^{2}+22t-1=0
Substitute t for x^{2}.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 22 for b, and -1 for c in the quadratic formula.
t=\frac{-22±4\sqrt{31}}{6}
Do the calculations.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
Solve the equation t=\frac{-22±4\sqrt{31}}{6} when ± is plus and when ± is minus.
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}