Solve for x
x = -\frac{19}{5} = -3\frac{4}{5} = -3.8
Graph
Share
Copied to clipboard
4x+20+2\left(x+2\right)=x+5
Use the distributive property to multiply 4 by x+5.
4x+20+2x+4=x+5
Use the distributive property to multiply 2 by x+2.
6x+20+4=x+5
Combine 4x and 2x to get 6x.
6x+24=x+5
Add 20 and 4 to get 24.
6x+24-x=5
Subtract x from both sides.
5x+24=5
Combine 6x and -x to get 5x.
5x=5-24
Subtract 24 from both sides.
5x=-19
Subtract 24 from 5 to get -19.
x=\frac{-19}{5}
Divide both sides by 5.
x=-\frac{19}{5}
Fraction \frac{-19}{5} can be rewritten as -\frac{19}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}