Solve for x
x=\frac{\sqrt{5}}{2}-2\approx -0.881966011
x=-\frac{\sqrt{5}}{2}-2\approx -3.118033989
Graph
Share
Copied to clipboard
4\left(x^{2}+6x+9\right)-2\left(x-1\right)^{2}+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36-2\left(x-1\right)^{2}+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36-2\left(x^{2}-2x+1\right)+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+24x+36-2x^{2}+4x-2+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use the distributive property to multiply -2 by x^{2}-2x+1.
2x^{2}+24x+36+4x-2+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}+28x+36-2+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 24x and 4x to get 28x.
2x^{2}+28x+34+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Subtract 2 from 36 to get 34.
2x^{2}+28x+34+x^{2}-2x-15+2\left(x^{2}-5x+1\right)=x^{2}+10
Use the distributive property to multiply x-5 by x+3 and combine like terms.
3x^{2}+28x+34-2x-15+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+26x+34-15+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 28x and -2x to get 26x.
3x^{2}+26x+19+2\left(x^{2}-5x+1\right)=x^{2}+10
Subtract 15 from 34 to get 19.
3x^{2}+26x+19+2x^{2}-10x+2=x^{2}+10
Use the distributive property to multiply 2 by x^{2}-5x+1.
5x^{2}+26x+19-10x+2=x^{2}+10
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
5x^{2}+16x+19+2=x^{2}+10
Combine 26x and -10x to get 16x.
5x^{2}+16x+21=x^{2}+10
Add 19 and 2 to get 21.
5x^{2}+16x+21-x^{2}=10
Subtract x^{2} from both sides.
4x^{2}+16x+21=10
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}+16x+21-10=0
Subtract 10 from both sides.
4x^{2}+16x+11=0
Subtract 10 from 21 to get 11.
x=\frac{-16±\sqrt{16^{2}-4\times 4\times 11}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 16 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 4\times 11}}{2\times 4}
Square 16.
x=\frac{-16±\sqrt{256-16\times 11}}{2\times 4}
Multiply -4 times 4.
x=\frac{-16±\sqrt{256-176}}{2\times 4}
Multiply -16 times 11.
x=\frac{-16±\sqrt{80}}{2\times 4}
Add 256 to -176.
x=\frac{-16±4\sqrt{5}}{2\times 4}
Take the square root of 80.
x=\frac{-16±4\sqrt{5}}{8}
Multiply 2 times 4.
x=\frac{4\sqrt{5}-16}{8}
Now solve the equation x=\frac{-16±4\sqrt{5}}{8} when ± is plus. Add -16 to 4\sqrt{5}.
x=\frac{\sqrt{5}}{2}-2
Divide -16+4\sqrt{5} by 8.
x=\frac{-4\sqrt{5}-16}{8}
Now solve the equation x=\frac{-16±4\sqrt{5}}{8} when ± is minus. Subtract 4\sqrt{5} from -16.
x=-\frac{\sqrt{5}}{2}-2
Divide -16-4\sqrt{5} by 8.
x=\frac{\sqrt{5}}{2}-2 x=-\frac{\sqrt{5}}{2}-2
The equation is now solved.
4\left(x^{2}+6x+9\right)-2\left(x-1\right)^{2}+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36-2\left(x-1\right)^{2}+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36-2\left(x^{2}-2x+1\right)+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+24x+36-2x^{2}+4x-2+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Use the distributive property to multiply -2 by x^{2}-2x+1.
2x^{2}+24x+36+4x-2+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 4x^{2} and -2x^{2} to get 2x^{2}.
2x^{2}+28x+36-2+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 24x and 4x to get 28x.
2x^{2}+28x+34+\left(x-5\right)\left(x+3\right)+2\left(x^{2}-5x+1\right)=x^{2}+10
Subtract 2 from 36 to get 34.
2x^{2}+28x+34+x^{2}-2x-15+2\left(x^{2}-5x+1\right)=x^{2}+10
Use the distributive property to multiply x-5 by x+3 and combine like terms.
3x^{2}+28x+34-2x-15+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+26x+34-15+2\left(x^{2}-5x+1\right)=x^{2}+10
Combine 28x and -2x to get 26x.
3x^{2}+26x+19+2\left(x^{2}-5x+1\right)=x^{2}+10
Subtract 15 from 34 to get 19.
3x^{2}+26x+19+2x^{2}-10x+2=x^{2}+10
Use the distributive property to multiply 2 by x^{2}-5x+1.
5x^{2}+26x+19-10x+2=x^{2}+10
Combine 3x^{2} and 2x^{2} to get 5x^{2}.
5x^{2}+16x+19+2=x^{2}+10
Combine 26x and -10x to get 16x.
5x^{2}+16x+21=x^{2}+10
Add 19 and 2 to get 21.
5x^{2}+16x+21-x^{2}=10
Subtract x^{2} from both sides.
4x^{2}+16x+21=10
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}+16x=10-21
Subtract 21 from both sides.
4x^{2}+16x=-11
Subtract 21 from 10 to get -11.
\frac{4x^{2}+16x}{4}=-\frac{11}{4}
Divide both sides by 4.
x^{2}+\frac{16}{4}x=-\frac{11}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+4x=-\frac{11}{4}
Divide 16 by 4.
x^{2}+4x+2^{2}=-\frac{11}{4}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-\frac{11}{4}+4
Square 2.
x^{2}+4x+4=\frac{5}{4}
Add -\frac{11}{4} to 4.
\left(x+2\right)^{2}=\frac{5}{4}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x+2=\frac{\sqrt{5}}{2} x+2=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}}{2}-2 x=-\frac{\sqrt{5}}{2}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}