Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
x=-\frac{3}{8}=-0.375
Graph
Share
Copied to clipboard
4\left(x^{2}+6x+9\right)=9\left(2x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=9\left(2x-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=9\left(4x^{2}-4x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}+24x+36=36x^{2}-36x+9
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
4x^{2}+24x+36-36x^{2}=-36x+9
Subtract 36x^{2} from both sides.
-32x^{2}+24x+36=-36x+9
Combine 4x^{2} and -36x^{2} to get -32x^{2}.
-32x^{2}+24x+36+36x=9
Add 36x to both sides.
-32x^{2}+60x+36=9
Combine 24x and 36x to get 60x.
-32x^{2}+60x+36-9=0
Subtract 9 from both sides.
-32x^{2}+60x+27=0
Subtract 9 from 36 to get 27.
a+b=60 ab=-32\times 27=-864
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -32x^{2}+ax+bx+27. To find a and b, set up a system to be solved.
-1,864 -2,432 -3,288 -4,216 -6,144 -8,108 -9,96 -12,72 -16,54 -18,48 -24,36 -27,32
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -864.
-1+864=863 -2+432=430 -3+288=285 -4+216=212 -6+144=138 -8+108=100 -9+96=87 -12+72=60 -16+54=38 -18+48=30 -24+36=12 -27+32=5
Calculate the sum for each pair.
a=72 b=-12
The solution is the pair that gives sum 60.
\left(-32x^{2}+72x\right)+\left(-12x+27\right)
Rewrite -32x^{2}+60x+27 as \left(-32x^{2}+72x\right)+\left(-12x+27\right).
-8x\left(4x-9\right)-3\left(4x-9\right)
Factor out -8x in the first and -3 in the second group.
\left(4x-9\right)\left(-8x-3\right)
Factor out common term 4x-9 by using distributive property.
x=\frac{9}{4} x=-\frac{3}{8}
To find equation solutions, solve 4x-9=0 and -8x-3=0.
4\left(x^{2}+6x+9\right)=9\left(2x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=9\left(2x-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=9\left(4x^{2}-4x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}+24x+36=36x^{2}-36x+9
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
4x^{2}+24x+36-36x^{2}=-36x+9
Subtract 36x^{2} from both sides.
-32x^{2}+24x+36=-36x+9
Combine 4x^{2} and -36x^{2} to get -32x^{2}.
-32x^{2}+24x+36+36x=9
Add 36x to both sides.
-32x^{2}+60x+36=9
Combine 24x and 36x to get 60x.
-32x^{2}+60x+36-9=0
Subtract 9 from both sides.
-32x^{2}+60x+27=0
Subtract 9 from 36 to get 27.
x=\frac{-60±\sqrt{60^{2}-4\left(-32\right)\times 27}}{2\left(-32\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -32 for a, 60 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-32\right)\times 27}}{2\left(-32\right)}
Square 60.
x=\frac{-60±\sqrt{3600+128\times 27}}{2\left(-32\right)}
Multiply -4 times -32.
x=\frac{-60±\sqrt{3600+3456}}{2\left(-32\right)}
Multiply 128 times 27.
x=\frac{-60±\sqrt{7056}}{2\left(-32\right)}
Add 3600 to 3456.
x=\frac{-60±84}{2\left(-32\right)}
Take the square root of 7056.
x=\frac{-60±84}{-64}
Multiply 2 times -32.
x=\frac{24}{-64}
Now solve the equation x=\frac{-60±84}{-64} when ± is plus. Add -60 to 84.
x=-\frac{3}{8}
Reduce the fraction \frac{24}{-64} to lowest terms by extracting and canceling out 8.
x=-\frac{144}{-64}
Now solve the equation x=\frac{-60±84}{-64} when ± is minus. Subtract 84 from -60.
x=\frac{9}{4}
Reduce the fraction \frac{-144}{-64} to lowest terms by extracting and canceling out 16.
x=-\frac{3}{8} x=\frac{9}{4}
The equation is now solved.
4\left(x^{2}+6x+9\right)=9\left(2x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=9\left(2x-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=9\left(4x^{2}-4x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}+24x+36=36x^{2}-36x+9
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
4x^{2}+24x+36-36x^{2}=-36x+9
Subtract 36x^{2} from both sides.
-32x^{2}+24x+36=-36x+9
Combine 4x^{2} and -36x^{2} to get -32x^{2}.
-32x^{2}+24x+36+36x=9
Add 36x to both sides.
-32x^{2}+60x+36=9
Combine 24x and 36x to get 60x.
-32x^{2}+60x=9-36
Subtract 36 from both sides.
-32x^{2}+60x=-27
Subtract 36 from 9 to get -27.
\frac{-32x^{2}+60x}{-32}=-\frac{27}{-32}
Divide both sides by -32.
x^{2}+\frac{60}{-32}x=-\frac{27}{-32}
Dividing by -32 undoes the multiplication by -32.
x^{2}-\frac{15}{8}x=-\frac{27}{-32}
Reduce the fraction \frac{60}{-32} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{15}{8}x=\frac{27}{32}
Divide -27 by -32.
x^{2}-\frac{15}{8}x+\left(-\frac{15}{16}\right)^{2}=\frac{27}{32}+\left(-\frac{15}{16}\right)^{2}
Divide -\frac{15}{8}, the coefficient of the x term, by 2 to get -\frac{15}{16}. Then add the square of -\frac{15}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{8}x+\frac{225}{256}=\frac{27}{32}+\frac{225}{256}
Square -\frac{15}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{8}x+\frac{225}{256}=\frac{441}{256}
Add \frac{27}{32} to \frac{225}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{16}\right)^{2}=\frac{441}{256}
Factor x^{2}-\frac{15}{8}x+\frac{225}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{16}\right)^{2}}=\sqrt{\frac{441}{256}}
Take the square root of both sides of the equation.
x-\frac{15}{16}=\frac{21}{16} x-\frac{15}{16}=-\frac{21}{16}
Simplify.
x=\frac{9}{4} x=-\frac{3}{8}
Add \frac{15}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}