Solve for x
x = \frac{16}{3} = 5\frac{1}{3} \approx 5.333333333
x=\frac{4}{7}\approx 0.571428571
Graph
Share
Copied to clipboard
4\left(x^{2}+6x+9\right)=25\left(x-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=25\left(x-2\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=25\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}+24x+36=25x^{2}-100x+100
Use the distributive property to multiply 25 by x^{2}-4x+4.
4x^{2}+24x+36-25x^{2}=-100x+100
Subtract 25x^{2} from both sides.
-21x^{2}+24x+36=-100x+100
Combine 4x^{2} and -25x^{2} to get -21x^{2}.
-21x^{2}+24x+36+100x=100
Add 100x to both sides.
-21x^{2}+124x+36=100
Combine 24x and 100x to get 124x.
-21x^{2}+124x+36-100=0
Subtract 100 from both sides.
-21x^{2}+124x-64=0
Subtract 100 from 36 to get -64.
x=\frac{-124±\sqrt{124^{2}-4\left(-21\right)\left(-64\right)}}{2\left(-21\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -21 for a, 124 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-124±\sqrt{15376-4\left(-21\right)\left(-64\right)}}{2\left(-21\right)}
Square 124.
x=\frac{-124±\sqrt{15376+84\left(-64\right)}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-124±\sqrt{15376-5376}}{2\left(-21\right)}
Multiply 84 times -64.
x=\frac{-124±\sqrt{10000}}{2\left(-21\right)}
Add 15376 to -5376.
x=\frac{-124±100}{2\left(-21\right)}
Take the square root of 10000.
x=\frac{-124±100}{-42}
Multiply 2 times -21.
x=-\frac{24}{-42}
Now solve the equation x=\frac{-124±100}{-42} when ± is plus. Add -124 to 100.
x=\frac{4}{7}
Reduce the fraction \frac{-24}{-42} to lowest terms by extracting and canceling out 6.
x=-\frac{224}{-42}
Now solve the equation x=\frac{-124±100}{-42} when ± is minus. Subtract 100 from -124.
x=\frac{16}{3}
Reduce the fraction \frac{-224}{-42} to lowest terms by extracting and canceling out 14.
x=\frac{4}{7} x=\frac{16}{3}
The equation is now solved.
4\left(x^{2}+6x+9\right)=25\left(x-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=25\left(x-2\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=25\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4x^{2}+24x+36=25x^{2}-100x+100
Use the distributive property to multiply 25 by x^{2}-4x+4.
4x^{2}+24x+36-25x^{2}=-100x+100
Subtract 25x^{2} from both sides.
-21x^{2}+24x+36=-100x+100
Combine 4x^{2} and -25x^{2} to get -21x^{2}.
-21x^{2}+24x+36+100x=100
Add 100x to both sides.
-21x^{2}+124x+36=100
Combine 24x and 100x to get 124x.
-21x^{2}+124x=100-36
Subtract 36 from both sides.
-21x^{2}+124x=64
Subtract 36 from 100 to get 64.
\frac{-21x^{2}+124x}{-21}=\frac{64}{-21}
Divide both sides by -21.
x^{2}+\frac{124}{-21}x=\frac{64}{-21}
Dividing by -21 undoes the multiplication by -21.
x^{2}-\frac{124}{21}x=\frac{64}{-21}
Divide 124 by -21.
x^{2}-\frac{124}{21}x=-\frac{64}{21}
Divide 64 by -21.
x^{2}-\frac{124}{21}x+\left(-\frac{62}{21}\right)^{2}=-\frac{64}{21}+\left(-\frac{62}{21}\right)^{2}
Divide -\frac{124}{21}, the coefficient of the x term, by 2 to get -\frac{62}{21}. Then add the square of -\frac{62}{21} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{124}{21}x+\frac{3844}{441}=-\frac{64}{21}+\frac{3844}{441}
Square -\frac{62}{21} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{124}{21}x+\frac{3844}{441}=\frac{2500}{441}
Add -\frac{64}{21} to \frac{3844}{441} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{62}{21}\right)^{2}=\frac{2500}{441}
Factor x^{2}-\frac{124}{21}x+\frac{3844}{441}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{62}{21}\right)^{2}}=\sqrt{\frac{2500}{441}}
Take the square root of both sides of the equation.
x-\frac{62}{21}=\frac{50}{21} x-\frac{62}{21}=-\frac{50}{21}
Simplify.
x=\frac{16}{3} x=\frac{4}{7}
Add \frac{62}{21} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}