Solve for x
x=-7
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Graph
Share
Copied to clipboard
4\left(x^{2}+6x+9\right)=\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=\left(x-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+24x+36-x^{2}=-2x+1
Subtract x^{2} from both sides.
3x^{2}+24x+36=-2x+1
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+24x+36+2x=1
Add 2x to both sides.
3x^{2}+26x+36=1
Combine 24x and 2x to get 26x.
3x^{2}+26x+36-1=0
Subtract 1 from both sides.
3x^{2}+26x+35=0
Subtract 1 from 36 to get 35.
a+b=26 ab=3\times 35=105
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+35. To find a and b, set up a system to be solved.
1,105 3,35 5,21 7,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 105.
1+105=106 3+35=38 5+21=26 7+15=22
Calculate the sum for each pair.
a=5 b=21
The solution is the pair that gives sum 26.
\left(3x^{2}+5x\right)+\left(21x+35\right)
Rewrite 3x^{2}+26x+35 as \left(3x^{2}+5x\right)+\left(21x+35\right).
x\left(3x+5\right)+7\left(3x+5\right)
Factor out x in the first and 7 in the second group.
\left(3x+5\right)\left(x+7\right)
Factor out common term 3x+5 by using distributive property.
x=-\frac{5}{3} x=-7
To find equation solutions, solve 3x+5=0 and x+7=0.
4\left(x^{2}+6x+9\right)=\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=\left(x-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+24x+36-x^{2}=-2x+1
Subtract x^{2} from both sides.
3x^{2}+24x+36=-2x+1
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+24x+36+2x=1
Add 2x to both sides.
3x^{2}+26x+36=1
Combine 24x and 2x to get 26x.
3x^{2}+26x+36-1=0
Subtract 1 from both sides.
3x^{2}+26x+35=0
Subtract 1 from 36 to get 35.
x=\frac{-26±\sqrt{26^{2}-4\times 3\times 35}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 26 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\times 3\times 35}}{2\times 3}
Square 26.
x=\frac{-26±\sqrt{676-12\times 35}}{2\times 3}
Multiply -4 times 3.
x=\frac{-26±\sqrt{676-420}}{2\times 3}
Multiply -12 times 35.
x=\frac{-26±\sqrt{256}}{2\times 3}
Add 676 to -420.
x=\frac{-26±16}{2\times 3}
Take the square root of 256.
x=\frac{-26±16}{6}
Multiply 2 times 3.
x=-\frac{10}{6}
Now solve the equation x=\frac{-26±16}{6} when ± is plus. Add -26 to 16.
x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{42}{6}
Now solve the equation x=\frac{-26±16}{6} when ± is minus. Subtract 16 from -26.
x=-7
Divide -42 by 6.
x=-\frac{5}{3} x=-7
The equation is now solved.
4\left(x^{2}+6x+9\right)=\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}+24x+36=\left(x-1\right)^{2}
Use the distributive property to multiply 4 by x^{2}+6x+9.
4x^{2}+24x+36=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+24x+36-x^{2}=-2x+1
Subtract x^{2} from both sides.
3x^{2}+24x+36=-2x+1
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+24x+36+2x=1
Add 2x to both sides.
3x^{2}+26x+36=1
Combine 24x and 2x to get 26x.
3x^{2}+26x=1-36
Subtract 36 from both sides.
3x^{2}+26x=-35
Subtract 36 from 1 to get -35.
\frac{3x^{2}+26x}{3}=-\frac{35}{3}
Divide both sides by 3.
x^{2}+\frac{26}{3}x=-\frac{35}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{26}{3}x+\left(\frac{13}{3}\right)^{2}=-\frac{35}{3}+\left(\frac{13}{3}\right)^{2}
Divide \frac{26}{3}, the coefficient of the x term, by 2 to get \frac{13}{3}. Then add the square of \frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{26}{3}x+\frac{169}{9}=-\frac{35}{3}+\frac{169}{9}
Square \frac{13}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{26}{3}x+\frac{169}{9}=\frac{64}{9}
Add -\frac{35}{3} to \frac{169}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}+\frac{26}{3}x+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x+\frac{13}{3}=\frac{8}{3} x+\frac{13}{3}=-\frac{8}{3}
Simplify.
x=-\frac{5}{3} x=-7
Subtract \frac{13}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}