Solve for x
x\geq \frac{5}{2}
Graph
Share
Copied to clipboard
4x+8\leq 3x-\left(2-5x\right)
Use the distributive property to multiply 4 by x+2.
4x+8\leq 3x-2-\left(-5x\right)
To find the opposite of 2-5x, find the opposite of each term.
4x+8\leq 3x-2+5x
The opposite of -5x is 5x.
4x+8\leq 8x-2
Combine 3x and 5x to get 8x.
4x+8-8x\leq -2
Subtract 8x from both sides.
-4x+8\leq -2
Combine 4x and -8x to get -4x.
-4x\leq -2-8
Subtract 8 from both sides.
-4x\leq -10
Subtract 8 from -2 to get -10.
x\geq \frac{-10}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x\geq \frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}