Solve for x
x=\frac{\sqrt{14}}{4}\approx 0.935414347
x=-\frac{\sqrt{14}}{4}\approx -0.935414347
Graph
Share
Copied to clipboard
\left(4x+4\right)\left(x-2\right)=-\left(1+2x\right)^{2}
Use the distributive property to multiply 4 by x+1.
4x^{2}-4x-8=-\left(1+2x\right)^{2}
Use the distributive property to multiply 4x+4 by x-2 and combine like terms.
4x^{2}-4x-8=-\left(1+4x+4x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+2x\right)^{2}.
4x^{2}-4x-8=-1-4x-4x^{2}
To find the opposite of 1+4x+4x^{2}, find the opposite of each term.
4x^{2}-4x-8+4x=-1-4x^{2}
Add 4x to both sides.
4x^{2}-8=-1-4x^{2}
Combine -4x and 4x to get 0.
4x^{2}-8+4x^{2}=-1
Add 4x^{2} to both sides.
8x^{2}-8=-1
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}=-1+8
Add 8 to both sides.
8x^{2}=7
Add -1 and 8 to get 7.
x^{2}=\frac{7}{8}
Divide both sides by 8.
x=\frac{\sqrt{14}}{4} x=-\frac{\sqrt{14}}{4}
Take the square root of both sides of the equation.
\left(4x+4\right)\left(x-2\right)=-\left(1+2x\right)^{2}
Use the distributive property to multiply 4 by x+1.
4x^{2}-4x-8=-\left(1+2x\right)^{2}
Use the distributive property to multiply 4x+4 by x-2 and combine like terms.
4x^{2}-4x-8=-\left(1+4x+4x^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+2x\right)^{2}.
4x^{2}-4x-8=-1-4x-4x^{2}
To find the opposite of 1+4x+4x^{2}, find the opposite of each term.
4x^{2}-4x-8-\left(-1\right)=-4x-4x^{2}
Subtract -1 from both sides.
4x^{2}-4x-8+1=-4x-4x^{2}
The opposite of -1 is 1.
4x^{2}-4x-8+1+4x=-4x^{2}
Add 4x to both sides.
4x^{2}-4x-7+4x=-4x^{2}
Add -8 and 1 to get -7.
4x^{2}-7=-4x^{2}
Combine -4x and 4x to get 0.
4x^{2}-7+4x^{2}=0
Add 4x^{2} to both sides.
8x^{2}-7=0
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-7\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-7\right)}}{2\times 8}
Square 0.
x=\frac{0±\sqrt{-32\left(-7\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{0±\sqrt{224}}{2\times 8}
Multiply -32 times -7.
x=\frac{0±4\sqrt{14}}{2\times 8}
Take the square root of 224.
x=\frac{0±4\sqrt{14}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{14}}{4}
Now solve the equation x=\frac{0±4\sqrt{14}}{16} when ± is plus.
x=-\frac{\sqrt{14}}{4}
Now solve the equation x=\frac{0±4\sqrt{14}}{16} when ± is minus.
x=\frac{\sqrt{14}}{4} x=-\frac{\sqrt{14}}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}