Solve for x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
Graph
Share
Copied to clipboard
4\left(x^{2}+2x+1\right)-169=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}+8x+4-169=0
Use the distributive property to multiply 4 by x^{2}+2x+1.
4x^{2}+8x-165=0
Subtract 169 from 4 to get -165.
a+b=8 ab=4\left(-165\right)=-660
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-165. To find a and b, set up a system to be solved.
-1,660 -2,330 -3,220 -4,165 -5,132 -6,110 -10,66 -11,60 -12,55 -15,44 -20,33 -22,30
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -660.
-1+660=659 -2+330=328 -3+220=217 -4+165=161 -5+132=127 -6+110=104 -10+66=56 -11+60=49 -12+55=43 -15+44=29 -20+33=13 -22+30=8
Calculate the sum for each pair.
a=-22 b=30
The solution is the pair that gives sum 8.
\left(4x^{2}-22x\right)+\left(30x-165\right)
Rewrite 4x^{2}+8x-165 as \left(4x^{2}-22x\right)+\left(30x-165\right).
2x\left(2x-11\right)+15\left(2x-11\right)
Factor out 2x in the first and 15 in the second group.
\left(2x-11\right)\left(2x+15\right)
Factor out common term 2x-11 by using distributive property.
x=\frac{11}{2} x=-\frac{15}{2}
To find equation solutions, solve 2x-11=0 and 2x+15=0.
4\left(x^{2}+2x+1\right)-169=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}+8x+4-169=0
Use the distributive property to multiply 4 by x^{2}+2x+1.
4x^{2}+8x-165=0
Subtract 169 from 4 to get -165.
x=\frac{-8±\sqrt{8^{2}-4\times 4\left(-165\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 8 for b, and -165 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 4\left(-165\right)}}{2\times 4}
Square 8.
x=\frac{-8±\sqrt{64-16\left(-165\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-8±\sqrt{64+2640}}{2\times 4}
Multiply -16 times -165.
x=\frac{-8±\sqrt{2704}}{2\times 4}
Add 64 to 2640.
x=\frac{-8±52}{2\times 4}
Take the square root of 2704.
x=\frac{-8±52}{8}
Multiply 2 times 4.
x=\frac{44}{8}
Now solve the equation x=\frac{-8±52}{8} when ± is plus. Add -8 to 52.
x=\frac{11}{2}
Reduce the fraction \frac{44}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{60}{8}
Now solve the equation x=\frac{-8±52}{8} when ± is minus. Subtract 52 from -8.
x=-\frac{15}{2}
Reduce the fraction \frac{-60}{8} to lowest terms by extracting and canceling out 4.
x=\frac{11}{2} x=-\frac{15}{2}
The equation is now solved.
4\left(x^{2}+2x+1\right)-169=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
4x^{2}+8x+4-169=0
Use the distributive property to multiply 4 by x^{2}+2x+1.
4x^{2}+8x-165=0
Subtract 169 from 4 to get -165.
4x^{2}+8x=165
Add 165 to both sides. Anything plus zero gives itself.
\frac{4x^{2}+8x}{4}=\frac{165}{4}
Divide both sides by 4.
x^{2}+\frac{8}{4}x=\frac{165}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+2x=\frac{165}{4}
Divide 8 by 4.
x^{2}+2x+1^{2}=\frac{165}{4}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{165}{4}+1
Square 1.
x^{2}+2x+1=\frac{169}{4}
Add \frac{165}{4} to 1.
\left(x+1\right)^{2}=\frac{169}{4}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x+1=\frac{13}{2} x+1=-\frac{13}{2}
Simplify.
x=\frac{11}{2} x=-\frac{15}{2}
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}